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NAND Flash technology 
Flash Technology was invented circa 1980 by a Japanese inventor, Dr. Fujio Masuoka, while he was 

working for Toshiba. (1) Intel was the first company to produce the chips en masse. (1) In the 1990s, the 

technology was adapted from the industry and is now used everywhere. There are two different types 

of technology in Flash memory. First, NOR-based Flash is typically used as a replacement for old ROM 

technology. It has a long erase and write time, but it has a random read access capability for any 

memory location. In contrast, NAND-based Flash has a shorter erase and write time, but has other 

limitations. One limitation with NAND-based Flash is that it needs page-level access to the data. When 

reading or writing, NAND can’t write by byte level, and the page size can vary from a few hundred bytes 

to a few thousand. (2) 

In this paper, I am going to present a methodology for reverse engineering NAND Flash memory. I am 

most interested in NAND Flash technology when it is used for storage on embedded systems. Even if you 

can’t perform random data access efficiently with NAND Flash, embedded devices can load up a whole 

NAND image to a DRAM and start up the operating system on the memory using an MTD (Memory 

Technology Device). I’ve found reverse engineering NAND Flash to be very beneficial when I was 

experimenting with many embedded devices. There are many different models of NAND Flash out there, 

and I’m using TSOP (Thin Small Outline Package) 48 type NAND Flash memory for my experiment here. 

This type of chip is very commonly used in many embedded devices on the market. 

NAND Flash specification 
The ONFI (Open NAND Flash Interface) is a joint working group of the companies involved with NAND 

Flash technology. It has published a series of industry standards, with specifications that are shared 

openly and revised over time to include new features. These resources are extremely useful for coming 

to grips with this technology. However, each chipset has its own specification, so whenever you work on 

your project, try to find the appropriate specification for your chipset. Mostly, the datasheets don’t vary 

much for each of the NAND Flash chipsets, but I advise referring to the most accurate information you 

can find for your chipset. 
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Direct interaction over JTAG method 
The Joint Test Action Group (JTAG) technique is the most common approach when reverse engineering 

modern embedded systems. While most vendors leave the JTAG interface for debugging and support, 

there is a growing trend for obfuscating or removing it for security purposes. If the target device is using 

NAND Flash memory for data storage, you can use a direct interaction method over JTAG. 

De-soldering 
The first step when interacting with NAND Flash memory is de-soldering the chip. You might use an SMT 

(Surface Mount Technology) re-work station for this process. (Figure 1) 

 

Figure 1 SMT re-work station 

The de-soldering process is very straightforward. The de-soldering station provides a hot air blower. 

Using the hot air, the solder alloy usually melts around 180 to 190 °C (360 to 370 °F) although I 

recommend setting the temperature slightly higher than that. Before applying high heat to the chip, you 

should put insulating tape around the target area. (Figure 2) This is for a couple of reasons: it protects 

other chips and stops the PCB (Printed Circuit Board) from burning; and it also prevents other small 

parts from being de-soldered accidentally. Direct the hot air over the pin areas evenly. At some point 

the chip will loosen and you can use tweezers or a similar tool to remove the chip from the board. You 

should be very careful not to burn yourself during this process. 



 

Figure 2 De-soldering in progress 

 

 

Figure 3 Removed chip 

 

NAND reader writer  
Now you have a bare NAND Flash chip at hand. The next step is reading the bare metal image from the 

chip. There have been a lot of different approaches tried over time by the hobbyist community: Some 

use special Flash reader chipsets that can provide low-level access. However, the most reliable way I 

found to do this was bit-banging using the FTDI FT2232H chip set. This method was originally suggested 

by Sprites Mod. Bit-banging is a technique that allows you to directly interact with chips through 

software. FT2232H is a versatile chip that provides various ways to interact with chips through a USB 

interface. 

http://spritesmods.com/?art=ftdinand&page=2


FTDI FT2232H 
FTDI FT2232H is a chip for USB communication. It provides USB 2.0 Hi-Speed (480Mb/s) to UART/FIFO IC. 

(3)To make my life easier, I just purchased an FTDI FT2232H breakout board and put female pin headers 

upon each of the port extensions. (Figure 4) The FTDI chip sets are pretty popular with hobbyists 

because of their versatility, so it would not be difficult to find a similar breakout board on the market. 

 

Figure 4 FTDI FT2232H Breakout board 

FTDI FT2232H supports multiple modes. The ‘MCU Host Bus Emulation Mode’ is appropriate for our 

purposes in this case. In this mode, the FTDI chip emulates an 8048/8051 MCU host bus. By sending the 

commands shown in Table 1 and retrieving the results, the software can read or write bits through I/O 

lines. More details are available in a note published by FTDI. 

Commands Operation Address 

0x90 Read 8bit address 

0x91 Read 16bit address 

0x92 Write 8bit address 

0x93 Write 16bit address 

0x82 Set High byte (BDBUS6, 7)  

0x83 Read High byte (BDBUS6, 7) 
Table 1 FT2232H Commands 

 

Connecting FT2232H with NAND Flash pins 
Figure 5 shows the typical NAND Flash memory, its pin numbers and names.  

http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
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Figure 5 Important NAND Flash memory pins and names 

Figure 6 shows the connection between the FT2232H chip and NAND Flash memory. The connections 

are mostly based on information from Sprites Mod , but there is a slight modification between BDBUS6 

and the CE (9) connection. 
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Figure 6 Connection between FT2232H and NAND Flash Memory 
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Table 2 shows you how to connect FT2232H pins with NAND Flash data lines. The ADBUS0 to ADBUS7 

pins are used for data transfer and are connected to the I/O0 to I/O7 pins of the NAND Flash memory 

chip. The functions of FT2232H’s pins are well explained in the datasheet. They are used for 8bit data 

transfer. 

FT2232H Use NAND Flash Pin number Description 

ADBUS0 Bit0 I/O0 29  
 
DATA INPUT/OUTPUT 
Input command, address and data. 
Output data during read operations. 

ADBUS1 Bit1 I/O1 30 

ADBUS2 Bit2 I/O2 31 

ADBUS3 Bit3 I/O3 32 

ADBUS4 Bit4 I/O4 41 

ADBUS5 Bit5 I/O5 42 

ADBUS6 Bit6 I/O6 43 

ADBUS7 Bit7 I/O7 44 
Table 2 FT2232H and NAND Flash Connections – Data Lines 

Table 3 shows the connections for data type bit pins. CLE and ALE are used for command latch and 

address latch enabling purposes, which means that when new commands or addresses are transferred 

these lines should go high [1]. In this way, NAND Flash can differentiate between commands, addresses 

and data. WP should go high when write operations are under way. CLE, ALE and WP are on ACBUS and 

this bus is the 8 high bits when a 16bit operation is performed from the FTDI FT2232H chip. By setting 

these bits on and off, the software side can control what kind of data or operations are sent to the Flash 

memory.  

FT2232H Use NAND Flash Pin number Description 

ACBUS5 Bit13 WP 19 WRITE PROTECT 
Write operations fail when this is not high. 

ACBUS6 Bit14 CLE 16 COMMAND LATCH ENABLE 
When this is high, commands are latched into the 
command register through the I/O ports. 

ACBUS7 Bit15 ALE 17 ADDRESS LATCH ENABLE 
When this is high, addresses are latched into the address 
registers. 

Table 3 FT2232H and NAND Flash Connections – Data Types Bits 

The RE and WE pins are used for signaling readiness for the FT2232H chip’s data read or write 

operations. When the FT2232H chip is ready to read data, it sends a falling signal on the BDBUS2 (RD#) 

pin and lets the other party know to send new data. When BDBUS3 (WR#) output is rising, it means new 

data is available from the FT2232H chip and it lets the NAND Flash chip fetch it. The BDBUS6 (I/O0) and 

BDBUS7 (I/O1) pins can be set and read using SET_BITS_HIGH (0x81), GET_BITS_HIGH (0x83) FT2232H 

commands. When RB is low, it means the Flash memory chip is busy processing data. CE bits are usually 

set to low, but when sequential row read operation is used, the pin needs to be set high after reading 

each block data. 

 

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf


FT2232H Use NAND Flash Pin number Description 

BDBUS6 I/O0 CE 9 CHIP ENABLE 
Low state means the chip is enabled. 

BDBUS7 I/O1 RB 7 READY/BUSY OUTPUT 
This pin indicates the status of the device operation. 
Low=busy, High=ready. 

BDBUS2 Serial Data 
In (RD#) 

RE 8 READ ENABLE 
Serial data-out control. Enable reading data from the 
device. 

BDBUS3 Serial Signal 
Out (WR#) 

WE 18 WRITE ENABLE 
Commands, addresses and data are latched on the rising 
edge of the WE pulse. 

Table 4 FT2232H and NAND Flash connections –synchronization & control 

Figure 7 shows a good example of a read operation. CLE and ALE go high which means the controller is 

sending commands and addresses. The RE changes phases when page data is read from the NAND Flash 

chip. The R/B line goes low during the busy state and back up to high when the NAND chip is ready. 

 

Figure 7 Repeated read operation 

 

You also need to connect power lines to each side of the NAND Flash memory chip. 

FT2232H Use NAND Flash Pin number Description 

3v3 POWER 3v3 12 POWER 

GND GROUND GND 13 GROUND 

3v3 POWER 3v3 36 POWER 

GND GROUND GND 37 GROUND 
Table 5 FT2232H and NAND Flash Connections – Power 

Besides these, the CE (Cheap Enable) pin (9) from the NAND Flash chip should be grounded. This means 

the chip is always enabled for normal operations. 



NAND Flash chip command sets 
Table 6 shows the basic command sets usually used by NAND Flash memory. There are more 

complicated commands available depending on the chipsets, but these basic commands are enough for 

essential operations like reading and writing data on the chip. Also, these commands tend to be the 

same across different models and brands. The pins and other descriptions presented here are mostly 

focused on small block NAND Flash models (512 bytes of data with 16 bytes OOB). Models with a large 

block size use a different set of commands, but the principle is same. 

Function 1st cycle 2nd cycle 

Read 1 00h/01h - 

Read 2 50h - 

Read ID 90h - 

Page Program 80h 10h 

Block Erase 60h D0h 

Read Status 70h  
Table 6 Basic command sets for usual NAND Flash memory (small blocks) 

 

Read operation 
Every operation is done by page with Flash memory. To read a page, it uses the Read 1 (00h, 01h) and 

Read 2 (50h) functions. To read a full page with OOB data from small block Flash memory, you need to 

read it 3 times. The 00h command is used to read the first half of the page data (A area). The 01h 

command is used to read the second half of the page data (B area). Finally, to retrieve the OOB of the 

page (spare C area), the 50h command is used. Figure 8 shows the state of each pin when read 

operations are performed. CLE is set to high [1] when commands (00h, 01h, 50h) are passed. ALE is set 

to high [1] when addresses are transferred. R/B pin is set to low [0]) when the chip is busy preparing the 

data. RE and WE are used to indicate the readiness of the data operation on the I/O lines. When the WE 

signal is rising, new bytes (command and address in this case) are sent to the I/O pins. When the RE 

signal is falling, new bytes come from the NAND Flash memory chip if any data is available. 

0 1
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Figure 8 Read operation pin states 

Figure 9 shows a good example of how WE, CLE, ALE, and RE pin states change over time. First, the WE 

and CLE logic changes to send commands.  Next, the WE and ALE change state to send addresses. Finally, 

RE is used to signal the reading of each byte. 
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Figure 9 Reading data 

 

 

From the FlashTool project, the code to read pages is implemented in a way similar to the examples 

shown in Figure 10 Error! Reference source not found.. The readPage method reads area A, B and the 

spare C area. The NAND_CMD_READ0 (00h), NAND_CMD_READ1 (01h) and NAND_CMD_READOOB 

(50h) commands are used to read each area. 

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
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Figure 10 Reading a small block page 

 

Write operation 
Writing operations are done through sequence-in command (80h) and program command (10h). (Table 

7) It uses a read status command (70h) to retrieve the result of the write operation. If the I/O0 is 0, it 

means the operation was successful. 
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70h I/O0=status
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Table 7 Write operation pin states 

Figure 11 shows the code that writes a page with a spare C area (OOB) from the FlashTool project. One 

thing to note is use of the NAND_CMD_READ0 (00h) at line 435, NAND_CMD_READ1 (01h) at line 446 

and NAND_CMD_READOOB (50h) at line 457. Three commands are used for the reading operation, but 

they are also used for moving the writing pointer to the A, B and C areas. If a NAND_CMD_SEQIN (80h) 

command follows just after these commands, it just moves the pointer to each area. Additionally, there 

should be a NAND_CMD_PAGEPROG (10h) command to commit the writing operation.  

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
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Figure 11 Writing a small block page with spare C area 

Figure 12 shows a good example of a writing operation. After a command and address are sent, WE 

fluctuates repeatedly to send bytes.  
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Figure 12 Writing Data 

 

Reader writer 
Figure 13 shows the final NAND Flash reader/writer assembled based on the connection information 

shown in Table 2. You can make a device like this even with a relatively low budget. You need an FTDI 

FT2232H breakout board, a USB cable, a TSOP48 socket, and wires.  

 

Figure 13 NAND Flash reader/writer 



Place your NAND Flash chip inside the TSOP48 socket. (Figure 14) This socket is very useful as you can 

safely place your NAND Flash chip inside it and then directly interact with the extended pins without 

touching and possibly damaging any Flash memory chip pins.  

 

Figure 14 TSOP48 socket 

 

When the NAND reader/writer is ready, just load the Flash memory. You should be careful to put the pin 

1 location on the correct side of the socket. Usually the socket shows where pin 1 should be located. 

(Figure 15)  When things are set, you can connect the reader/writer to the computer through a USB 

cable. 

Pin 1 location

 

Figure 15 Pin 1 location 

 

You need software to achieve bit-banging and there is a NANDTool open source project for this. I 

actually forked this project and created another experimental project here. Also, I ported whole C++ 

code to a Python project and made a FlashTool project. When the original project didn’t support NAND 

https://github.com/bkerler/NANDReader_FTDI
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py


Flash programming, I put support in with some modifications to the original code. I use my project for 

this demonstration.  

Download the FlashTool code from here first. You should install prerequisite packages like pyftdi and 

libusbx. With everything setup, you can query basic Flash information using the –i option. (Figure 16) 

 

Figure 16 NANDTool -i (reading information) 

You can also read the raw data (Figure 17). It takes some time to retrieve all the data depending on the 

size of the memory. 

 

Figure 17 Reading raw data 

The FlashTool also supports sequential row read mode. When you can specify the –s option, it uses the 

mode and increases reading performance. The speed of reading is faster than normal page-by-page 

mode by 5-6 times in this case. (Figure 18) 

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/eblot/pyftdi
http://libusbx.org/


 

Figure 18 Sequential Row read mode (-s) 

 

Working with a bare metal image 
NAND Flash memory is a physical device and there’s always the chance that it will be affected by the 

randomness of nature. NAND Flash uses a spare column to save meta-data on each page. A page is the 

minimum element of data operation in NAND Flash as NAND Flash can’t perform byte-by-byte 

operations. If you modify a byte from the page, it should rewrite the whole page with modified data.  To 

counteract random failures, Flash memory uses two concepts; ECC (Error Correction Code) and bad 

blocks. This information is saved in the spare column of each page, which is also called the OOB area. 

(Figure 19) 
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Figure 19 Data & OOB area 

ECC 
The ECC is a way to correct one bit of failure from a page. Failure can always occur with data on memory. 

A checksum can be useful to detect these errors. With ECC, besides detecting errors, it can correct them 

if they are minor. It uses the concept of Hamming code, invented by Richard Hamming in 1950. It was 

originally used for correcting errors with punch cards. (4) 

Modern Flash memories use a different ECC algorithm with Hamming code as its root. Even similar 

chipsets from the same vendor might have slightly different ECC algorithms. But the differences are 

minor and are generally just tweaks of XOR or shifting orders or methods. The problem is that you need 

to figure out the correct algorithms to verify the validity of each page and to generate ECC later for page 

modification. 

I’ll show the ECC algorithm used by the chip sets I worked on (Samsung K9F1208). Figure 20 shows the 

table representation of bits on a page with a size of 512. Each bit is represented by a cell and each row is 

one byte. From this matrix, first, you can calculate various checksums across bits. 



Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'

P8

P8'

P8

P16'

P16

P16'

P16

...

P32'

P32'

P1 P1' P1 P1' P1 P1' P1 P1'

P2 P2' P2 P2'

P4 P4'

P2048'

P2048

...

...

 

Figure 20 ECC calculation table 

For example, P8’ checksum is calculated by XOR-ing all the bits in red in Figure 21.  

 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'

P8

P8'

P8

P16'

P16

P16'

P16

...

P32'

P32'

P2048'

P2048

...

...

 

Figure 21 P8' calculation 

 

Figure 22 shows the example of calculating P16’. It uses bits from byte[0], bytes[1], byte[4], byte[5] and 

so on until byte[508] and byte[509] for checksum calculation. Other column checksums like P8, P16’, 

P16, P32’, P32, P2048’ and P2048 are calculated in same manner. 



Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'
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P8'
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...
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Figure 22 P16' calculation 

Figure 23 shows the example code that implements this algorithm.  

 

Figure 23 Code for calculating row checksums 

 



The column checksums are calculated over the same bit locations over all the bytes in the page. For 

example, Figure 24 shows how P2 can be calculated by taking bits 2,3,6,7 from each byte. 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P1 P1' P1 P1' P1 P1' P1 P1'

P2 P2' P2 P2'

P4 P4'

 

Figure 24 P2 calculation 

 

Figure 25 shows the code that calculates column checksums. 

 

Figure 25 Row checksum calculation code 

Finally, you need to calculate 3 ECC values based on the checksums calculated. The row and column 

checksum methods are very similar for different NAND Flash memory models, but ECC calculations tend 

to be slightly different across different models. The code in Figure 26 shows the algorithm used for the 

specific model I worked on. 



 

Figure 26 ECC calculation code 

 

 

Bad blocks 
‘Bad blocks’ is a generic concept that is also used in hard disk technology. With Flash memory, if errors 

are more than the ECC can handle, it marks the entire block as bad. Those blocks are isolated from other 

blocks and are no longer used. To mark bad blocks, the first or last pages are used for marking, 

according to the ONFI standard. Some vendors use their own scheme for marking bad blocks. Figure 27 

shows one of the examples for checking bad blocks from the DumpFlash project. If the 6th byte from the 

OOB data of the first or second page for each block has non FFh values, it is recognized as a bad block. 

This scheme is used by multiple vendors including Samsung and Micron. 

 

Figure 27 Example bad block check routine 

 

 

Figure 28 Using DumpFlash tool to find bad blocks 

 

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py


Start of a bad block

Bad block marker != 0xFF
OOB

 

Figure 29 How a bad block is marked 

 

Reverse engineering Flash memory data 
When the NAND Flash memory is used for booting up embedded systems, the structure usually looks 

similar to Figure 30. The first block is always loaded first to address 0x00000000 during the boot-up 

process. After that U-Boot code and images follow. When the boot-loading code and U-Boot images are 

read only, the JFFS2 file system is used for reading and writing.  
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Figure 30 An example of Flash memory layout 

 

1st stage boot loader 
This boot loader does low level initialization. (Figure 31) 

 

Figure 31 Low level initialization of the system 

 



It also loads up the next level boot loader. Figure 32 from the image I worked on shows very interesting 

strings like the name of the first boot loader and some log messages on the next level boot loader. 

 

Figure 32 Strings from the first stage boot loader 

U-Boot loader 
After the first stage boot loader, there is a next level boot loader that can perform various complicated 

operations. U-Boot loader is a very popular choice amongst embedded systems. The kernel image and 

actual file system are placed with them.  

 

Figure 33 U-boot boot code 

 

U-Boot images 
The U-Boot image usually follows the U-Boot loader code. If the first 4 bytes of a block starts with the U-

boot magic DWORD 0x56190527, then it’s probably a U-Boot image. Figure 34 shows the image header 

definition that contains the magic value. 



 

Figure 34 U-Boot image header structure 

For example, Figure 35 shows a typical U-Boot image header. The important value in retrieving the 

whole image file is the image length. The header size is 0x40 and image length is 0x28A03B in this case. 

This makes the total image size 0x28A07B.  

Image Name

Magic
Image Length

Compression Type

Image Type

 

Figure 35 Typical U-Boot Image header 

For my example, one page is 0x200 bytes, so the page count of the U-Boot image is 0x28A07B/0x200 = 

0x1450. There are additional 0x28A07B%0x200 = 0x7B bytes above these pages. One page on the NAND 

dump image is 0x210 because of the extra OOB size (0x10). So the physical address of the image end is 

similar to the following: 

 page count = 0x1450 

 extra data = 0x7B  

page count *  (page size + oob size) + extra data 



= 0x1450 * (0x200 + 0x10) + 0x7b 

= 0x29E57B 

The start address of the image is 0x31800 and if you add up this to the size of the image on the NAND 

image (0x29E57B), it becomes 0x2CFD7B.  

You can extract this image by running the following command using the –r option designating the start 

and end addresses of the data. 

 

python DumpFlash.py -r 0x00031800 0x002CFD7B -o Dump-00031800-UBOOT.dmp flash.dmp  

 

Interestingly, IDA supports loading U-Boot images. (Figure 36) 

 

Figure 36 U-Boot Image Disassembly 

 

However, manually parsing the image still helps us to understand the internals, and IDA doesn’t do well 

with multi-file images. Figure 37 shows the U-Boot header and multi-file length fields after that. The 



DWORD 0x00000000 marks the end of length fields. For this image it has two images inside it with 

lengths of 0x000E9118 and 0x001A0F17. 

 

1st image length 2nd image length End of image length

U-Boot header
Multi-file image

 

Figure 37 Multi-file image 

 

You can also use the mkimage command to check the content of the U-Boot file. (Figure 38) 

 

Figure 38 mkimage result 

 

Ramdisk image 
When image 0 looks like a code file, image 1 has more interesting contents. By just fiddling around with 

it you can identify that it is gzip compressed. After decompression, if you run the file command on the 

file, it looks like Figure 39, which shows that the file is an ext2 file system file. 

 

Figure 39 File command result on the 02.decompressed.img 

You can mount the file on the Linux system using MTD. First, load MTD related kernel modules. (Figure 

40) 



 

Figure 40 Loading MTD modules 

You can use dd to copy the image to the MTD block device. (Figure 41) 

 

Figure 41 Using dd to copy image 

After copying the image to the MTD device, you can mount it using the mount command. (Figure 42) 

 

Figure 42 Mounting the device 

Kernel image 
With the image I worked on, I found another U-Boot image. The basic image information is shown in 

Figure 43. 

 

Figure 43 mkimage information for second U-Bootimage 

 



IDA loads up this image without any issues. The only problem is that the code shown by IDA is the 

bootstrapping code that decompresses following the gzipped kernel image. To identify the start of the 

kernel image, you can search for the gzip image magic value (0x8b1f) as shown in Figure 44. 

Start of gzipped 
kernel image

 

Figure 44 Start of compressed image 

After you take out the image starting from the gzip magic bytes, you can decompress the image using 

any decompression utility that supports the gzip format. After it is decompressed you can load up the 

image using IDA. (Figure 45) 

 

Figure 45 Kernel Image Disassembly 



JFFS2 
From the whole layout, the JFFS2 file system is at the core of the data analysis. The boot loaders are 

usually based on very generic code. Many interesting custom files are placed under the JFFS2 file system. 

Identifying the JFFS2 file system from the raw NAND Flash image is relatively easy. Usually JFFS2 puts 

specialized erasemarkers inside the spare column of each page. The erasemarkers are inserted when the 

NAND Flash memory is formatted with JFFS2 file system tools. This indicates that the block is used by 

JFFS2 and doesn’t need additional initialization. Ideally, the erasemarkers would be located at every first 

page of each block. But, in reality it can present in every few blocks if the file system was created with a 

block size different from the real NAND Flash memory block size. This doesn’t prevent JFFS2 from 

working correctly, but might challenge performance. 

Erasemarker
ECC Bad block 

indicator 
(FF=Clean)

OOB

 

Figure 46 JFFS2 Erase Marker location from a page and spare column bytes 

 



After identifying the start of the JFFS2 file system, you can extract the whole image. You need to verify if 

any bad blocks are present in the middle, check ECC for each block and remove the spare column from 

the original bytes. To assist with this process, I released a tool called DumpFlash.py. To extract part of 

the Flash memory, you just pass the start and end addresses after the –r option. You can put an output 

file name after the –o option. The following command dumps out the JFFS2 file system (at address 

0x0262c200 ~ 0x03084600) bytes from the flash.dmp file. (Figure 47) 

 

python DumpFlash.py -r 0x0262c200 0x03084600 -o jffs2.dmp flash.dmp 

 

Start of the JFFS2 
file system

 

Figure 47 Example of start address of a JFFS2 file system 

Mounting the JFFS2 file system using MTD 
Now you can mount the JFFS2 raw image on the Linux operating system. First, you need to create an 

MTD device. Load related Linux kernel modules like mtdram, mtdblock and jffs2 first. (Figure 48)  This  

creates an MTD device on the system. 

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py


 

Figure 48 Loading related kernel modules 

Use the dd utility to initialize the data of the MTD block device and mount the device to an arbitrary 

location. (Figure 49) 

 

Figure 49 Mount MTD block device 

After successful mounting, you can navigate and modify the file system on the fly. (Figure 50)  

 

Figure 50 Mounted JFFS2 file system 

Low level JFFS2 analysis 
JFFS2 is a journaling file system. A journaling file system is one that keeps logs of changes to the file 

system. This is very useful for embedded systems as it means they can be turned off any time without 

any proper shutdown process without breaking the whole file system. You might lose some changes, but 

the integrity of other major file systems is not affected. Journaling makes the file system more resistant 

to corruption due to sudden shutdown. The fact that JFFS2 keeps file system changes can be very useful 

from a forensic point of view. 

To automate the process of analyzing the JFFS2 file system, I created the DumpJFFS2 project that can 

handle the low level nature of the JFFS2 file system file. Using this tool, you can dump out the whole file 

system without mounting. Based on the source code, you can even create your own custom logic to 

analyze the low level JFFS2 file system. 

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py


Modifying data and reattaching 
The good thing with this JFFS2 mounting technique is that you have write access on the file system. You 

can try to modify and patch any files on the system and take the JFFS2 raw image from the MTD device. 

The dumped image is a valid JFFS2 file that can be mounted again. You can program the NAND flash with 

this modified JFFS2 data. 

 

Figure 51 Dumping mtdblock device raw image 

 

Writing to NAND Flash 
After you make changes to the JFFS2 file system image, you need to place the OOB data before writing 

to the Flash memory. The following command reconstructs a flat NAND Flash image from a memory 

image of the JFFS2 file system. It reads the mtdblock0.dmp file dumped from the MTD device and adds 

OOB data automatically, writing it to the mtdblock0.oob.dmp file. It calculates ECC for each page and 

adds the JFFS2 erasemarker for each block. 

 

python DumpFlash.py -R -o mtdblock0.oob.dmp mtdblock0.dmp 

 

Using this flat image, you can finally write it back to the original NAND Flash memory chip. With the 

NAND reader/writer connected to a USB port, run following command: 

python FlashTool.py  -w mtdblock.mod.oob.dmp -R 0x12820 0xffffffff 

The -s option designates the start page number. The option 0x12820 designates the address of 0x12820 

* (0x200 + 0x10) in this case (page size=0x100=512, spare column=0x10=16). The actual location it 

writes is 0x262C200. This is the location from where I extracted the JFFS2 image. 

Figure 52 shows what this NAND Flashing process looks like. 

 

Figure 52 Writing the full image to NAND Flash 



 

Re-soldering 
After modifying raw data and writing it back to the Flash memory, it is time to re-solder the chip onto 

the target system.  The re-soldering process is not much different from standard SMT soldering. 

Originally SMT was developed for automatic soldering of PCB components. So the chips are usually small 

and the pitch of the pins is also relatively small. This makes soldering them to the PCB manually 

challenging, but it is not extremely difficult when you get accustomed to it. There are many different 

methodologies developed by many hobbyists. The method I used was just placing the chip on the pin 

location and heating the pins using the soldering iron. This lets the solder residue (Figure 53) left from 

the previous de-soldering process melt again. The chip is soldered again using this same solder. 

Sometimes adding a small amount of solder paste onto each pin helps the chip to reattach to the board. 

If this method doesn’t meet your requirements, you can remove any solder residue first and start with 

new solder or solder paste. Various detailed techniques can be found on the Internet. 

 

Figure 53 Solder residue 

There are many pitfalls with SMT soldering and one of the big issues is bridging. The pitch for the NAND 

flash TSOP48 model is 0.5 mm, which is extremely small. This means the solder can easily go over 

multple pins and create shorts. (Figure 54)  - be careful to ensure this doesn’t happen. 

 

Figure 54 Bridge 



One of the other big problems with re-soldering is possible damage to the board. (Figure 55) With the 

de-soldering process, excessive heat is applied and it can damage the PCB board. With this in mind, you 

should be extra careful when you re-solder the chips. One good thing with Flash memory, is that many 

pins are not actually used. If the damaged patterns are not used, then the chips will still operate 

normally. You should check with the chip datasheet to see if any damaged patterns are actually used by 

the chip. 

 

Figure 55 Damaged circuit board 

For my case, the circuit for pin 48 was damaged but luckily the pin is never used by the chip. So 

everything worked fine after re-soldering. The truth is that the pins that are not used have a greater 

tendency to be damaged as they are not connected to any circuitry on the system. They are just glued to 

the board without any connection to other components and it makes them more vulnerable to heat. 

Tools 
FlashTool – Python Implmentation of Flash reader/writer software 

• https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py  

• Write support 

• Fast sequential row read mode support 

• More experimental code coming. 

Enhanced NandTool (forked from original NandTool): NandTool with writing support 

• https://github.com/ohjeongwook/NANDReader_FTDI  

• Write support 

DumpFlash.py: Flash image manipulation tool (ECC, Bad block check) 

• https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py  

DumpJFFS2.py: JFFS2 parsing tool 

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py


• https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py  

 

Conclusion 
Interacting directly with Flash memory is useful when JTAG can’t be used. This situation is becoming 

more and more likely these days as some vendors obfuscate or remove JTAG interfaces to protect their 

intellectual property. As a security researcher, you have a need for accessing the internals of embedded 

systems. By directly interacting with a low level Flash memory interface, you have the benefit of 

accessing data that can’t otherwise be retrieved. The entire process can be time consuming, but the 

benefit is clear. The de-soldering method is referred to as a destructive method in reverse engineering 

hardware. But, it is still possible to re-solder the chip to the system using SMT soldering methods. There 

is a higher chance of damaging the circuit board than when working on a fresh, new PCB board, but the 

chance for success is still high enough. Also, there are many factors to consider when extracting, 

modifying and reconstructing a bare metal image with your modification like ECC, bad blocks and JFFS2 

erasemarkers. You might try to modify code from many places like boot loaders, the kernel and the 

JFFS2 root image. Thus, you can start on your way to researching embedded systems, even when JTAG 

connections are not feasible. 

Lastly, many USB thumb drives and other devices also use NAND Flash memory for storage and they 

don’t have any JTAG points at all by design. Even though the data format saved on the memory will be 

totally different from what is presented here, it could be beneficial to perform forensic analysis on these 

devices using this method. 
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