Reverse Engineering Flash Memory for Fun
and Benefit

Jeong Wook (Matt) Oh

oh@hp.com

oh.jeongwook@gmail.com

HP

NAND Flash technology

Flash Technology was invented circa 1980 by a Japanese inventor, Dr. Fujio Masuoka, while he was
working for Toshiba. (1) Intel was the first company to produce the chips en masse. (1) In the 1990s, the
technology was adapted from the industry and is now used everywhere. There are two different types
of technology in Flash memory. First, NOR-based Flash is typically used as a replacement for old ROM
technology. It has a long erase and write time, but it has a random read access capability for any
memory location. In contrast, NAND-based Flash has a shorter erase and write time, but has other
limitations. One limitation with NAND-based Flash is that it needs page-level access to the data. When
reading or writing, NAND can’t write by byte level, and the page size can vary from a few hundred bytes
to a few thousand. (2)

In this paper, | am going to present a methodology for reverse engineering NAND Flash memory. | am
most interested in NAND Flash technology when it is used for storage on embedded systems. Even if you
can’t perform random data access efficiently with NAND Flash, embedded devices can load up a whole
NAND image to a DRAM and start up the operating system on the memory using an MTD (Memory
Technology Device). I've found reverse engineering NAND Flash to be very beneficial when | was
experimenting with many embedded devices. There are many different models of NAND Flash out there,
and I’'m using TSOP (Thin Small Outline Package) 48 type NAND Flash memory for my experiment here.
This type of chip is very commonly used in many embedded devices on the market.

NAND Flash specification

The ONFI (Open NAND Flash Interface) is a joint working group of the companies involved with NAND
Flash technology. It has published a series of industry standards, with specifications that are shared
openly and revised over time to include new features. These resources are extremely useful for coming
to grips with this technology. However, each chipset has its own specification, so whenever you work on
your project, try to find the appropriate specification for your chipset. Mostly, the datasheets don’t vary
much for each of the NAND Flash chipsets, but | advise referring to the most accurate information you
can find for your chipset.

mailto:oh@hp.com
mailto:oh.jeongwook@gmail.com
http://www.onfi.org/specifications

Direct interaction over JTAG method

The Joint Test Action Group (JTAG) technique is the most common approach when reverse engineering
modern embedded systems. While most vendors leave the JTAG interface for debugging and support,
there is a growing trend for obfuscating or removing it for security purposes. If the target device is using
NAND Flash memory for data storage, you can use a direct interaction method over JTAG.

De-soldering

The first step when interacting with NAND Flash memory is de-soldering the chip. You might use an SMT
(Surface Mount Technology) re-work station for this process. (Figure 1)

Figure 1 SMT re-work station

The de-soldering process is very straightforward. The de-soldering station provides a hot air blower.
Using the hot air, the solder alloy usually melts around 180 to 190 °C (360 to 370 °F) although |
recommend setting the temperature slightly higher than that. Before applying high heat to the chip, you
should put insulating tape around the target area. (Figure 2) This is for a couple of reasons: it protects
other chips and stops the PCB (Printed Circuit Board) from burning; and it also prevents other small
parts from being de-soldered accidentally. Direct the hot air over the pin areas evenly. At some point
the chip will loosen and you can use tweezers or a similar tool to remove the chip from the board. You
should be very careful not to burn yourself during this process.

Figure 2 De-soldering in progress

Figure 3 Removed chip

NAND reader writer

Now you have a bare NAND Flash chip at hand. The next step is reading the bare metal image from the
chip. There have been a lot of different approaches tried over time by the hobbyist community: Some
use special Flash reader chipsets that can provide low-level access. However, the most reliable way |
found to do this was bit-banging using the FTDI FT2232H chip set. This method was originally suggested
by Sprites Mod. Bit-banging is a technique that allows you to directly interact with chips through
software. FT2232H is a versatile chip that provides various ways to interact with chips through a USB
interface.

http://spritesmods.com/?art=ftdinand&page=2

FTDI FT2232H

FTDI FT2232H is a chip for USB communication. It provides USB 2.0 Hi-Speed (480Mb/s) to UART/FIFO IC.
(3)To make my life easier, | just purchased an FTDI FT2232H breakout board and put female pin headers
upon each of the port extensions. (Figure 4) The FTDI chip sets are pretty popular with hobbyists

because of their versatility, so it would not be difficult to find a similar breakout board on the market.

Figure 4 FTDI FT2232H Breakout board

FTDI FT2232H supports multiple modes. The ‘MCU Host Bus Emulation Mode’ is appropriate for our
purposes in this case. In this mode, the FTDI chip emulates an 8048/8051 MCU host bus. By sending the
commands shown in Table 1 and retrieving the results, the software can read or write bits through 1/0
lines. More details are available in a note published by FTDI.

Read 8bit address

Read 16bit address

Write 8bit address

Write 16bit address

Set High byte (BDBUSS6, 7)
Read High byte (BDBUSS6, 7)

Table 1 FT2232H Commands

Connecting FT2232H with NAND Flash pins
Figure 5 shows the typical NAND Flash memory, its pin numbers and names.

http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf

1
2
3
4
5
6
7
8
E)

Figure 5 Important NAND Flash memory pins and names

Figure 6 shows the connection between the FT2232H chip and NAND Flash memory. The connections
are mostly based on information from Sprites Mod , but there is a slight modification between BDBUS6
and the CE (9) connection.

ADBUSO 29— 1/00

ADBUS1 30— 1/01

ADBUS2 31— 1/02

ADBUS3 32— 1/03

ADBUS4 41— 1/04

ADBUSS5 42— 1/05

ADBUS6 43— 1/06

FT2232H ADBUS7 44 1/07

ACBUSS 19— WP

NAND Flash

ACBUS6 16— CLE
ACBUS7 17— ALE Memory

BDBUS2 8— RE

BDBUS3 18— WE

BDBUS6 9— CE

BDBUS7 7 RB

12 Vce

3.3v —|
374 Vcc
134 Vss
GND —|
36+ Vss

Figure 6 Connection between FT2232H and NAND Flash Memory

http://spritesmods.com/?art=ftdinand&page=2

Table 2 shows you how to connect FT2232H pins with NAND Flash data lines. The ADBUSO to ADBUS7
pins are used for data transfer and are connected to the 1/00 to /07 pins of the NAND Flash memory
chip. The functions of FT2232H’s pins are well explained in the datasheet. They are used for 8bit data
transfer.

'ADBUSO Bit0 1/00 29

'ADBUS1 Bit1 /01 30

'ADBUS2 Bit2 /02 31 DATA INPUT/OUTPUT
_ Bit3 I/03 32 Input command, address and data.
_ Bit4 1/04 41 Output data during read operations.
TADBUS5 Bit5 /05 42

|ADBUS6 Bit6 /06 43

'ADBUS7 Bit7 /07 44

Table 2 FT2232H and NAND Flash Connections — Data Lines

Table 3 shows the connections for data type bit pins. CLE and ALE are used for command latch and
address latch enabling purposes, which means that when new commands or addresses are transferred
these lines should go high [1]. In this way, NAND Flash can differentiate between commands, addresses
and data. WP should go high when write operations are under way. CLE, ALE and WP are on ACBUS and
this bus is the 8 high bits when a 16bit operation is performed from the FTDI FT2232H chip. By setting
these bits on and off, the software side can control what kind of data or operations are sent to the Flash

memory.

Bit13 WP 19 WRITE PROTECT
Write operations fail when this is not high.
Bit14 CLE 16 COMMAND LATCH ENABLE

When this is high, commands are latched into the
command register through the 1/0 ports.

Bit15 ALE 17 ADDRESS LATCH ENABLE
When this is high, addresses are latched into the address
registers.

Table 3 FT2232H and NAND Flash Connections — Data Types Bits

The RE and WE pins are used for signaling readiness for the FT2232H chip’s data read or write
operations. When the FT2232H chip is ready to read data, it sends a falling signal on the BDBUS2 (RD#)
pin and lets the other party know to send new data. When BDBUS3 (WR#) output is rising, it means new
data is available from the FT2232H chip and it lets the NAND Flash chip fetch it. The BDBUS6 (I/00) and
BDBUS7 (1/01) pins can be set and read using SET_BITS_HIGH (0x81), GET_BITS_HIGH (0x83) FT2232H
commands. When RB is low, it means the Flash memory chip is busy processing data. CE bits are usually
set to low, but when sequential row read operation is used, the pin needs to be set high after reading
each block data.

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf

FT2232H Use NAND Flash Pin number Description

BDBUS6 1/00 CE 9 CHIP ENABLE
Low state means the chip is enabled.
BDBUS7 /01 RB 7 READY/BUSY OUTPUT

This pin indicates the status of the device operation.
Low=busy, High=ready.

BDBUS2 Serial Data RE 8 READ ENABLE
In (RD#) Serial data-out control. Enable reading data from the
device.
BDBUS3 Serial Signal WE 18 WRITE ENABLE
Out (WR#) Commands, addresses and data are latched on the rising

edge of the WE pulse.
Table 4 FT2232H and NAND Flash connections —synchronization & control

Figure 7 shows a good example of a read operation. CLE and ALE go high which means the controller is
sending commands and addresses. The RE changes phases when page data is read from the NAND Flash
chip. The R/B line goes low during the busy state and back up to high when the NAND chip is ready.

File View Device Help
DEHE |[@k ~=-@ aBalll

Wavefoms | User comments

& RS- Ne B

100

- — Data retrieving done SCANALOGIC-2 Cursor = 000: 195 : 284 us

Figure 7 Repeated read operation

You also need to connect power lines to each side of the NAND Flash memory chip.

FT2232H Use NAND Flash Pin number Description
3v3 POWER 3v3 12 POWER
GND GROUND GND 13 GROUND
3v3 POWER 3v3 36 POWER
GND GROUND GND 37 GROUND

Table 5 FT2232H and NAND Flash Connections — Power

Besides these, the CE (Cheap Enable) pin (9) from the NAND Flash chip should be grounded. This means
the chip is always enabled for normal operations.

NAND Flash chip command sets

Table 6 shows the basic command sets usually used by NAND Flash memory. There are more
complicated commands available depending on the chipsets, but these basic commands are enough for
essential operations like reading and writing data on the chip. Also, these commands tend to be the
same across different models and brands. The pins and other descriptions presented here are mostly
focused on small block NAND Flash models (512 bytes of data with 16 bytes OOB). Models with a large
block size use a different set of commands, but the principle is same.

00h/01h
50h -

90h =
80h 10h
60h DOh
70h

Table 6 Basic command sets for usual NAND Flash memory (small blocks)

Read operation

Every operation is done by page with Flash memory. To read a page, it uses the Read 1 (00h, 01h) and
Read 2 (50h) functions. To read a full page with OOB data from small block Flash memory, you need to
read it 3 times. The 00h command is used to read the first half of the page data (A area). The 01h
command is used to read the second half of the page data (B area). Finally, to retrieve the OOB of the
page (spare C area), the 50h command is used. Figure 8 shows the state of each pin when read
operations are performed. CLE is set to high [1] when commands (00h, 01h, 50h) are passed. ALE is set
to high [1] when addresses are transferred. R/B pin is set to low [0]) when the chip is busy preparing the
data. RE and WE are used to indicate the readiness of the data operation on the I/O lines. When the WE
signal is rising, new bytes (command and address in this case) are sent to the 1/O pins. When the RE
signal is falling, new bytes come from the NAND Flash memory chip if any data is available.

- 00h/01h Start Address
1/00~7 AO— A7 AG— A5 Data Output

Figure 8 Read operation pin states

Figure 9 shows a good example of how WE, CLE, ALE, and RE pin states change over time. First, the WE
and CLE logic changes to send commands. Next, the WE and ALE change state to send addresses. Finally,
RE is used to signal the reading of each byte.

Write Write
Command Address

p 10,000 us

L 4

Figure 9 Reading data

From the FlashTool project, the code to read pages is implemented in a way similar to the examples
shown in Figure 10 Error! Reference source not found.. The readPage method reads area A, B and the
spare C area. The NAND_CMD_READO (00h), NAND_CMD_READ1 (01h) and NAND_CMD_READOOB
(50h) commands are used to read each area.

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

self.sendimd(s el+ MAND_CMD_READ&) e
SElt.MdltREd)) i H (0-255)
self.sendAdd enoccd,self. AddrCycles)
celf.waitRea

bytes+=self. r94dD4t1| elf.PageSize/2)

self.sendCmd(s l+ MAND CMD READL)
self.waitRe)
self.sendBddr (pagencc<&,self.Addriycles)

(256-511)

self.waitRes
bytec+=self.readDataiself.Fagesize/)

self.zendimd(self.NAND CMD_REALCOE) Read spare C
self.waltReady()))) ﬂ area (512-527)
self.sendAdd enod<d,self. AddrCycles)

self.waitRes

bytes+=self.readData(self.00B5ize)

Figure 10 Reading a small block page

Write operation

Writing operations are done through sequence-in command (80h) and program command (10h). (Table
7) It uses a read status command (70h) to retrieve the result of the write operation. If the I/00 is O, it
means the operation was successful.

R/B=0
-

Rising for each bytes - Rising

. Address Input

Table 7 Write operation pin states

Figure 11 shows the code that writes a page with a spare C area (OOB) from the FlashTool project. One
thing to note is use of the NAND_CMD_READO (00h) at line 435, NAND_CMD_READ1 (01h) at line 446
and NAND_CMD_READOOB (50h) at line 457. Three commands are used for the reading operation, but
they are also used for moving the writing pointer to the A, B and C areas. If a NAND_CMD_SEQIN (80h)
command follows just after these commands, it just moves the pointer to each area. Additionally, there
should be a NAND_CMD_PAGEPROG (10h) command to commit the writing operation.

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

Write A area
(0-255)

Werite B area
(256-511)

Write spare C
area (512-527)

Figure 11 Writing a small block page with spare C area

Figure 12 shows a good example of a writing operation. After a command and address are sent, WE
fluctuates repeatedly to send bytes.

Write
Command

»20,000 us

Figure 12 Writing Data

Reader writer

Figure 13 shows the final NAND Flash reader/writer assembled based on the connection information
shown in Table 2. You can make a device like this even with a relatively low budget. You need an FTDI
FT2232H breakout board, a USB cable, a TSOP48 socket, and wires.

Figure 13 NAND Flash reader/writer

Place your NAND Flash chip inside the TSOP48 socket. (Figure 14) This socket is very useful as you can
safely place your NAND Flash chip inside it and then directly interact with the extended pins without
touching and possibly damaging any Flash memory chip pins.

Figure 14 TSOP48 socket

When the NAND reader/writer is ready, just load the Flash memory. You should be careful to put the pin
1 location on the correct side of the socket. Usually the socket shows where pin 1 should be located.

(Figure 15) When things are set, you can connect the reader/writer to the computer through a USB
cable.

cree

WIAAR

FRPPRPT TR IR P R PTITRY (30

Figure 15 Pin 1 location

You need software to achieve bit-banging and there is a NANDTool open source project for this. |
actually forked this project and created another experimental project here. Also, | ported whole C++
code to a Python project and made a FlashTool project. When the original project didn’t support NAND

https://github.com/bkerler/NANDReader_FTDI
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

Flash programming, | put support in with some modifications to the original code. | use my project for
this demonstration.

Download the FlashTool code from here first. You should install prerequisite packages like pyftdi and
libusbx. With everything setup, you can query basic Flash information using the —i option. (Figure 16)

python Fl: Tool.py -1

64MiE S S-bhit

Hanufacturer:

Figure 16 NANDTool -i (reading information)

You can also read the raw data (Figure 17). It takes some time to retrieve all the data depending on the
size of the memory.

C=d000

Figure 17 Reading raw data

The FlashTool also supports sequential row read mode. When you can specify the —s option, it uses the
mode and increases reading performance. The speed of reading is faster than normal page-by-page
mode by 5-6 times in this case. (Figure 18)

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/eblot/pyftdi
http://libusbx.org/

Manufacturer: Jarnsargy

Feading Qx3cO/ 1000 (504258 hytes/sec)

Figure 18 Sequential Row read mode (-s)

Working with a bare metal image

NAND Flash memory is a physical device and there’s always the chance that it will be affected by the
randomness of nature. NAND Flash uses a spare column to save meta-data on each page. A page is the
minimum element of data operation in NAND Flash as NAND Flash can’t perform byte-by-byte
operations. If you modify a byte from the page, it should rewrite the whole page with modified data. To
counteract random failures, Flash memory uses two concepts; ECC (Error Correction Code) and bad
blocks. This information is saved in the spare column of each page, which is also called the OOB area.

(Figure 19)

Offset(h) 00 01 OZ 03 04 05 06 O7 08 05 OA OB OC OD OE OF

00000000 |OF OO0 00 EA 18 FO 9F ES 18 FO 9F ES 18 FO 9F E5 | ...&.8Y4.58Y4.8Y4
00000010 |18 FO 9F ES5 18 FO SF ES 18 FO 9F ES 18 FO SF ES5 | .aY&.aV4.aY4.aY4
00000020 |18 FO 9F ES5 €O 02 00 OO0 €O 02 00 00 €O 02 00 00 | .&YAK...A...A...
00000030 |CO 02 00 00 €O 02 OO0 OO €O OZ 00 00 CO 02 00 00 | A...A...A...A...
00000040 |7C 01 00 OO0 53 04 AD E3 00 10 AD E3 00 10 80 E5 | |...5. &.. &..€4
00000050 |34 D1 9F ES 00 10 EO E3 00 10 80 ES5 2C 01 9F ES | 4.Y4. .44, .24, . Y&
00000060 |2C 11 9F ES5 00 10 80 ES 28 01 9F ES5 28 11 9F ES | ,.YA..€&(.Y&(.Y&
00000070 |OD 10 80 ES5 24 D1 SF ES 24 11 SF ES5 00 10 80 ES LERS.YAS. YA, (€4

00000080 |01 1C AO E3 01 10 S1 E2 FD FF FF 1A 14 01 SF ES | .. A..Q4¢y¢...Y4
00000090 |00 10 90 ES A1 26 AD E1 O3 SO 02 E2 00 00 55 E3 | ...&;¢ &.P.A..U&
000000A0 |05 DO 0D OA D1 OO S5 E3 OS 00 OO0 OA OZ 0O S5 E3 |U&......U&

000000BO |0S 0D OO0 OA FO 40 SF ES 0S5 00 00 EA EC 40 SF ES |80Y4...&1i0Y4
000000CO |03 OO0 00 EA E8 40 SF ES 01 OO0 00 EA E4 40 SF ES | ...&eAY4...44RY4
000000D0 |FF FF FF EA BC 00 SF ES DC 10 SF ES 00 10 80 ES | ¢¢véw. YAU. Y4, .€d
000000ED |CO OO0 OF ES 02 19 AD E3 00 10 80 ES CC 00 OF ES | A.YA.. &..€41.Y4
03 10 AD E3 0D 10 80 ES5 13 03 AO E3 FF 14 EO E3 | .. &..€d.. &y.ad
00 10 80 ES5 BS 00 9F ES5 BS 10 SF ES5 00 10 80 E5 | ..«4,. %4, . Y4, .ed
00000110 |B4 10 9F ES5 O0 AD 91 ES 02 00 1A E3 06 00 00 1A | *.Y4. “*4...&....
00000120 |04 0D AD E1 12 13 AD E3 34 20 80 E2 04 30 S0 E4 | .. 4.. &4 €®4.0.4
00000130 |04 30 81 E4 00 00 S2 E1 FB FF FF 1A 02 00 1A E3 | .0.&..RAGYY....&
00000140 |58 00 00 OA 84 10 9F ES 00 00 91 ES OE 08 CO E3 | X.....YA.. A, . A&
00000150 |00 OO 81 ES 04 00 AD E1 12 13 AO E3 34 20 80 E2 | ...4.. 4.. B4 €4
00000160 |04 30 90 E4 04 30 81 E4 00 OO0 S2 E1 FB FF FF 1A | .0.&.0.4. . RAGYY.
00000170 |FE 10 AD E3 01 10 51 EZ2 FD FF FF 1A 50 10 9F ES | pb. &..0&999.P.?5

00000180 |00 60 91 ES 06 FO AD E1 OO OO0 AD E1 08 00 00 4A | .' ‘4.8 4.. 4...J
00000190 | 1C 00 OO0 4A FF O3 OD OO0 60 O0 OO 56 00 FF 50 41 | . J¥... "+ V. ¥PA
000001AD |68 00 OO0 S6é 98 9F OO0 OO0 64 OO0 OO0 S6é D8 01 00 00 | h..V°Y..d..VD...
000001BO |40 02 OO0 OO0 OC O2 OO OO 74 02 00 OO0 OO FF SO S5 [@..... eeCuss o YPU

000001C0 |14 00 OO0 4C 04 00 00 4C 11 CO OS5 00 B4 00 00 56 | ...L...L.A.." ..V
000001DP0 |80 00 OO Sé BB 00 00 Sé 20 99 11 22 00 07 00 OO | =, .V, .. V™", ...
000001EQ |00 O7 0D OO0 FO 7F OO0 OO 4C 1F 00 00 00 O7 00 00 | sceaBuaulicuauas
000001F0 |00 O7 0D 00 OS 80 01 OO OS5 80 01 0D ES O1 SE OO |%...9%,. . &, 2.

000002pSp| GA AR G6| FF FF|FF|FF FF FF FF FF FF FF FF FF FF | 3*—$440 9949 99ivy
OOB Area

I_T

ECC Bad Block Marker

Figure 19 Data & OOB area

ECC

The ECC is a way to correct one bit of failure from a page. Failure can always occur with data on memory.
A checksum can be useful to detect these errors. With ECC, besides detecting errors, it can correct them
if they are minor. It uses the concept of Hamming code, invented by Richard Hamming in 1950. It was
originally used for correcting errors with punch cards. (4)

Modern Flash memories use a different ECC algorithm with Hamming code as its root. Even similar
chipsets from the same vendor might have slightly different ECC algorithms. But the differences are
minor and are generally just tweaks of XOR or shifting orders or methods. The problem is that you need
to figure out the correct algorithms to verify the validity of each page and to generate ECC later for page
modification

I'll show the ECC algorithm used by the chip sets | worked on (Samsung K9F1208). Figure 20 shows the
table representation of bits on a page with a size of 512. Each bit is represented by a cell and each row is
one byte. From this matrix, first, you can calculate various checksums across bits.

SRR - | o | s | oo | o | o | o | o)
SER - [oo | s | oo o | o | o | o)
| A EA R
| I

SR oo | s | oo [o | [oo | o | o
SR oo [| oo o [0 o om0
SR oo [e | oo o |0 o o | w0
T oo | e oo (o o e

e

Figure 20 ECC calculation table

For example, P8’ checksum is calculated by XOR-ing all the bits in red in Figure 21.

SR - | o | s | oo | o | o | oo | o)
SRR - | oo | o | oo | o | ou | o | o)
SR o [o | o | ot o0 | o | | o0
| R

TN - | s | oo | s | oo | s | o | o0
AN - | oo | o | oo | oo | o | o | o)
SN - | o | o | s [o | w2 | ma | o)
o] [T

Figure 21 P8' calculation

Figure 22 shows the example of calculating P16’. It uses bits from byte[0], bytes[1], byte[4], byte[5] and
so on until byte[508] and byte[509] for checksum calculation. Other column checksums like P8, P16/,
P16, P32’, P32, P2048’ and P2048 are calculated in same manner.

SR - | o | s | oo | o | o | e | o)
SR - | oo | o5 | ot o0 | o | a0
SR - | oo | o | oo | o0 | ou | e | o)
| I E

I = | o | s | ot | oo | oa | o | w0
I = | o | s | e o [0 | o0 w0
I - | o | oo | oo | o | oo | o0 | w0
o] [R A T T

Figure 22 P16 calculation

Figure 23 shows the example code that implements this algorithm.

xor_bit

or_bit

xor_bit

pl2g

pl28_

p256

p256_

p512

xor_bit p512_

_bit * ple24

xor_bit ple2d

xor_bit * p2eds_

Figure 23 Code for calculating row checksums

The column checksums are calculated over the same bit locations over all the bytes in the page. For
example, Figure 24 shows how P2 can be calculated by taking bits 2,3,6,7 from each byte.

| I
SRR o | o o om0 | o
SR o | o o o0 ma | o | oo
oo | ARSI

I I

vo| TR

byte[510]
byte[511]
—
Figure 24 P2 calculation

Figure 25 shows the code that calculates column checksumes.

pl - bit7 * bits * bit3
pl_ - bite * bitd * bit2
p2 = bit7 * bité * bit3

p2_ - bits * bitd * bitl
pd - bit7 * bité * bits
pd_ - bit3 * bit2 * bitl

Figure 25 Row checksum calculation code

Finally, you need to calculate 3 ECC values based on the checksums calculated. The row and column
checksum methods are very similar for different NAND Flash memory models, but ECC calculations tend
to be slightly different across different models. The code in Figure 26 shows the algorithm used for the
specific model | worked on.

Figure 26 ECC calculation code

Bad blocks

‘Bad blocks’ is a generic concept that is also used in hard disk technology. With Flash memory, if errors
are more than the ECC can handle, it marks the entire block as bad. Those blocks are isolated from other
blocks and are no longer used. To mark bad blocks, the first or last pages are used for marking,
according to the ONFI standard. Some vendors use their own scheme for marking bad blocks. Figure 27
shows one of the examples for checking bad blocks from the DumpFlash project. If the 6™ byte from the
OOB data of the first or second page for each block has non FFh values, it is recognized as a bad block.
This scheme is used by multiple vendors including Samsung and Micron.

{page * (self.PageSize + self.0OBSize))

bad_block_b;
self.ERROR

NAND FlashsToolsc:spython2?python DumpFlash.py -b flash.dmp

found 3 errors

Figure 28 Using DumpFlash tool to find bad blocks

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

03LSCES0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF igoigiaioiates
03LSCELD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 94909 iideeivesy
03LSCEED FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF iioigiaioiates
03LSCECO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF $94409iiaieivesy
03LSCEDD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Sigoigiaioiuies
03LSCEED FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF $94409iiaiiivesy
03LSCEFD FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF igoigiaieiates
00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 .. enerennnennn.
00 0D OO0 00 00 00 00 00 00 00 00 00 00 OO0 00 00 vueurnenrnenennn
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 vueuvnenrnenennn
00 0D OO0 00 00 00 00 00 00 00 00 00 00 OO0 00 00 vueurnenrnenennn
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 vueuvnenrnenennn
00 0D OO0 00 00 00 00 00 00 00 00 00 00 OO0 00 00 vueurnenrnenennn
S atte i orTo ol fo/e/ Q= L5CCE0 00 0D 00 00 00 OO0 OO0 00 OO0 00 00 00 00 00 00 00 euveernnneenenn-
J3ASCCTO0 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 vuernenenenenns
03A5CCED 00 00 00 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 wuevevneernensns
03A5CCO0 00 00 OO0 00 00 OO0 00 00 OO0 OO0 00 00 00 00 00 00 vuevevevernennns
03A5CCAD 00 00 OO0 OO0 OO0 OO0 00 00 OO0 00 00 00 00 00 00 00 wuevevnvernenns
03L5CCED OO0 00 OO0 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 vuevevevernennns
03A5CCCO 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 wuevevnvernenns
03L5CCDO OO0 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 vuevevevernennns
03A5CCED 00 00 00 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 wuevevneernenns
03L5CCFOD OO0 00 OO0 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 vuevevevernennns
03A5CDO0 00 00 00 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 wuevevneernenns
03A45CD10 00 00 OO0 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 wuevevevernennns
03A5CDEZ0 00 00 00 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 4uevevneernenns
03A5CD30 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 4uevevevernennns
03A5CD40 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 4uevevnvernennns
03A5CDE0 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 4uevevevernennns
03A5CDE0 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 00 00 00 wuevevevernennns
03A45CD70 00 00 OO0 00 OO0 OO0 00 00 OO0 00 00 00 00 00 00 00 4uevevnvernennns
03A5CDE0 OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 00 00 00 vuevevevernennns
03A5CD90 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 4uevevevernennns
03A5CDAD OO0 00 OO0 OO0 00 OO0 00 00 00 00 00 00 00 00 00 00 wuevevevernennns
03A5CDED 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 wuevevnvernennns
03A5CDCO OO0 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 vuevevevernennns
03A5CDD0 00 00 OO0 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 4uevevevernennns
03A5CDED OO0 00 OO0 00 00 OO0 00 00 00 00 00 00 00 00 00 00 vuevevevernenns
0345CDF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4uuvevneesnennns
03LSCEQD 00 00 00 00 OOJO0f 00 00 00 00 00 00 00 00 D0 D0+ eeeeneesneesss 1

e Bad block marker != OxFF

Figure 29 How a bad block is marked

Reverse engineering Flash memory data

When the NAND Flash memory is used for booting up embedded systems, the structure usually looks
similar to Figure 30. The first block is always loaded first to address 0x00000000 during the boot-up
process. After that U-Boot code and images follow. When the boot-loading code and U-Boot images are
read only, the JFFS2 file system is used for reading and writing.

1% stage boot loader

(1 block)

U-Boot Image 1
(Ramdisk)

U-Boot Image 2

(Kernel)

Figure 30 An example of Flash memory layout

1°t stage boot loader

This boot loader does low level initialization. (Figure 31)

ROM: 00000178
ROM: 00000178
ROM:@0068017C
ROM:OOBBO1B0
ROM: 00000184
ROM: 00000188
ROM:0000018C
ROM: 00000198
ROM: 00080194
ROM: 00080198
ROM:0000019C
ROM:0000019C
ROM:00088019C
ROM:000BD1A0
ROM:0000D1A%
ROM:000801A8
ROM:0000801AC
ROM: 00000180
ROM: 00000188
ROM: 00080180
ROM:0000018%
ROM: 00000188
ROM:000801BC
ROM:000001CH

Figure 31 Low level initialization of the system

loc_178

loc_19C

loc_1B6

TST
BEQ
LOR
LDR
BIC
STR
HOU
HOU
ADD

LDR
STR
CHP
BNE
Hou

SuBS
BNE
LDR
LDR
HoU

; CODE XREF: RﬂH:HHUHn15H1j
R10, #2
loc_2EC
R1, =0x56000080 ; S3C2410X_MISCCR
RO, [R1]
RO, RO, HOxEGOOO
RO, [R1]
RO, R4 ; R4: bytes to send to bus
R1, #0x48000800 ; S3C2410X_BWSCON
R2, RO, #0x34

; CODE XREF: ROM:B00001A8}]
R3, [RO],%4
R3, [R1],#4 ; RO: bytes to send to bus
R2, RO
loc_19C
R1, 8OxFE ; *}*

; CODE XREF: ROM: 00000184} j
R1, R1, M1
loc_18B0
R1, =0x56000088 ; S3C2410X_GSTATUS3
R6, [R1]
PC, R6

It also loads up the next level boot loader. Figure 32 from the image | worked on shows very interesting
strings like the name of the first boot loader and some log messages on the next level boot loader.

ROM:-BBB0BDFS aMandBootloader DCB ""Hand Bootloader{ADAHM)Y 3.2 _4"',0=A

ROM:= BA80BDFS DCe ™ ",8

ROM:- BOB0OBE16 DCB 8

ROM:- BABBBET7 DCB 8

ROM:- BOB0BE18 DCB BxA

ROM:BBBABE1? alLoadingUBoot DCB "Loading U-BOOT ™, BxA
ROM:- BOB0BBE19 pce v, 0

ROM: BABBBE2B DCB 8

ROM:= BABBBE2C DCB B8xA

ROM:= BABBBE2D DCB B8xA

ROM:BBBABEZE alUBootExit DCB “U-Boot EXIT™,8xA,8

Figure 32 Strings from the first stage boot loader

U-Boot loader

After the first stage boot loader, there is a next level boot loader that can perform various complicated
operations. U-Boot loader is a very popular choice amongst embedded systems. The kernel image and
actual file system are placed with them.

Function name m

[F] sub_sE4 7
£ sub_fl4
1| sub_&D4 =
sub_C28
sub_Ch4
sub_CT4
sub_CF4

h
2
=

I 1
=
&
o
=

K|

K|

K|

&

[#

[#

[F] sub_Dso I

[F] sub_DCC

[F] sub_Foc

[F] sub_1260

sub_1284 sub_1284

L] b 118 Lok R, [Ro)

L£] sub_t31¢ HOY RO, Ea,asnus

[£] sub_t374 Mou RO, RO,LSLH16

[F] sub_1308 ORR R@, RO, R3,LSL#24

[F] sub_134c LDR RZ, =8xFFF

[F] sub_t9cc CHH RA, #0x10000

[F] sub_1838 HOVEQ RO, R2

LL sub 1as0 o RO RO.LSL#20

%z:z-ms MoU RO, RO,LSRH20
- cHp RE, R2

7] sub_s034 MOUNE RO, #0x12

[£] sub_4z58 HOUED RA, #8xE

[7] sub_s428 RET

Izl sub_d4438 ; End of function sub_1284

% sub_847C

7

SL_leSﬁC S

~

b

Figure 33 U-boot boot code

U-Boot images

The U-Boot image usually follows the U-Boot loader code. If the first 4 bytes of a block starts with the U-
boot magic DWORD 0x56190527, then it’s probably a U-Boot image. Figure 34 shows the image header
definition that contains the magic value.

IH_MAGIC Ex27E5 1956
IH_MMLEM 32

wint

wint

wint

wint

wint

wints t

wintsg ¢

wints t ih_twpe;
wints t ih comp;

wints t ih_name[IH_NWLEM] ;

1 image_header_t;

Figure 34 U-Boot image header structure

For example, Figure 35 shows a typical U-Boot image header. The important value in retrieving the
whole image file is the image length. The header size is 0x40 and image length is 0x28A03B in this case.

This makes the total image size 0x28A07B.

: mummemel Image Length
— Image Type

A 4

00031800 |2? 05 19 SGIAD 5D A1 4D 45 66|69

ooo3is1i0 30 10 80 00 30 10 30 00 29 75

Compression Type

A 4
A5|00 28 AO 3E|
4|00

"LV] MIEi¥.

ooo31s5z0 (4D 75 30 30 30 34 55 53 20 30 33
00031830 |31 31 66 Z0 41 6C 74 00 OO OO OO

ZE 30 30 20 30 MxOO004U3 03.00 O
00 00 00 00 00 11f Alt.....u..w

4

A

Figure 35 Typical U-Boot Image header

For my example, one page is 0x200 bytes, so

— Image Name

the page count of the U-Boot image is 0x28A07B/0x200 =

0x1450. There are additional 0x28A07B%0x200 = 0x7B bytes above these pages. One page on the NAND
dump image is 0x210 because of the extra OOB size (0x10). So the physical address of the image end is

similar to the following:
page count = 0x1450

extra data = Ox7B

page count * (page size + oob size) + extra data

= 0x1450 * (0x200 + 0x10) + 0x7b
= 0x29E578B

The start address of the image is 0x31800 and if you add up this to the size of the image on the NAND
image (Ox29E57B), it becomes 0x2CFD7B.

You can extract this image by running the following command using the —r option designating the start
and end addresses of the data.

python DumpFlash.py -r 0x00031800 ©x002CFD7B -o Dump-00031800-UBOOT.dmp flash.dmp

Interestingly, IDA supports loading U-Boot images. (Figure 36)

EFunction... O & x IDAView-R@ | @Hex View-& | @Structures | L§] Enums | |§E|Imports
; Byte sex - Little endian

_n
=
S
=
o
=1
5
=
@
™

start
sub_3010816C ; 3egment type: Regular
sub_301083CC AREA seqBBB, DATA, ALIGH=4
sub 30108420 ; ORG Bx30108000
sub_301084FC
sub_3010850C

sub_3010851C EXPORT start

sub_3010854C start

sub_3010869C

sub_J01086AC arg_10000= Bx10800
sub_301086E0 LDHNELA R1. (R9-R11}
sub_301087DC STRNE R1. [PC.-RO,LSL#20]
sub_30108824 ANDEQ RO, RO, RO
sub_3010834C HOP

sub_30108AE8 HOP

sub_30109008 NOP

sub_3010016% HOP

sub_3010970C HOP

sub_301098C0 HOP

sub_3010A048 :g::

sub_30104188 B loc_36810883C

sub_301041ER
sub_30104218
sub_3010430C
sub_30104400
sub_30104BDE

@ ea =

e Y |

loc_3010883C

Hou R7, R1
] 3 Moy RE, #8

MRS R2, CP3R

TST R2, #3

BHE loc_38188658
s =
HOW RO, #8x17
SUC Bx123456

100.00% (-6,252) (202,233) UNENOUN 30108018: atart+ls

Figure 36 U-Boot Image Disassembly

However, manually parsing the image still helps us to understand the internals, and IDA doesn’t do well
with multi-file images. Figure 37 shows the U-Boot header and multi-file length fields after that. The

DWORD 0x00000000 marks the end of length fields. For this image it has two images inside it with
lengths of 0x000E9118 and 0x001A0F17.

U-Boot header

Multi-file image
Off=sef (h) 02 03 04 05 08 07 05 09 0OA OB OC OD OE OF

goooopoo |27 05 19 56 A0 5D A1 4D 459 66 69 AS 00 =28 AD 3B '..F] iMIfi¥. [;
ooooopio |30 10 80 OO 30 10 80 00 23 75 D9 91 05 02 [odj@e—e=slo.g. ulr. ...
oooooo=0" | 40 ¥E 30 30 30 34 55 53 Z0 30 33 ZE 30 30 20 30| Mx0004U3 03.00 0O
00000030 |31 31 66 20 41 &6C 74 00 00 OO0 00 OO0 OO OO0 OO0 COO) 11f Alt.........

oooooo40 |00 OF 91 18|00 1 OF 17|00 00 00 00f00 00 AQ E1 . .dueeeeevunn. a
00000050 00 OO&AD E1 00 OOAAD E1 00 OOMA0 E1 OO0 OO0 AO0 E1 .. &.. &.. &.. &
00000060 00 OO|AD E1 OO OO|ADC EL OO OO|AOD E1 OZ 00 OO0 EA .. &.. &.. &...8

[] |

1* image length 2" image length End of image length

Figure 37 Multi-file image

You can also use the mkimage command to check the content of the U-Boot file. (Figure 38)

O: 954648
l: 170

Figure 38 mkimage result

Ramdisk image

When image 0 looks like a code file, image 1 has more interesting contents. By just fiddling around with
it you can identify that it is gzip compressed. After decompression, if you run the file command on the
file, it looks like Figure 39, which shows that the file is an ext2 file system file.

. 02 . .decompressed. img

02 .decompressed. img: Linux rew L0 extz ilesystem dat: ifd—-eedd—-494

=bddf-22d13!) at=

Figure 39 File command result on the 02.decompressed.img

You can mount the file on the Linux system using MTD. First, load MTD related kernel modules. (Figure
40)

Figure 40 Loading MTD modules

You can use dd to copy the image to the MTD block device. (Figure 41)

.decompressed. img of=/dev/mtdb lockl

copied, 0.

Figure 41 Using dd to copy image

After copying the image to the MTD device, you can mount it using the mount command. (Figure 42)

root

root

roott root
root

root

roott root
root

root

root

root . ; . i * bindbusvhox
root

root

root

root

root

root

root

root

Figure 42 Mounting the device

Kernel image
With the image | worked on, | found another U-Boot image. The basic image information is shown in
Figure 43.
mki -1 Dump-003 O-UBQOT. dinp
Mx0O004173 01.00 011
Mon Mar 31 11

Figure 43 mkimage information for second U-Bootimage

IDA loads up this image without any issues. The only problem is that the code shown by IDA is the
bootstrapping code that decompresses following the gzipped kernel image. To identify the start of the
kernel image, you can search for the gzip image magic value (0x8b1f) as shown in Figure 44.

0000ZF90 6F 72 6D 61 74 20 28 65 72 72
O000ZFAOD 6F 75 74 20 &F 66 20 6D 65 6D

OO00ZFEOD 69 6E 76 61 &6C 69 &4 20 63 6F

0000ZFCO 65 64 20 66 &F 72 &0 61 74 20

OO00ZFDO 29 00 00 00 63 72 &3 20 65 72

OO0O0ZFED 6C 65 6E 67 74 68 20 65 72 72

ooooowR] 55 GE 63 6F 6D 70 72 65 73 73

NElaRe FerAlefofs oM 0 E 75 78 2E 2E 2E 00 00 20 &4
K | image M &F &F 74 69 &E 67 20 74 68 65
erne g z0l—q S 08 00 9F A8
00003030 OF 7C 94 C5 9D 3F 3E CF FE D9

00003040 24 CA Es 8F 14 35 Be 4F 20 68

00003050 6D 17 09 44 2D DS 00 C1 62 BB

00003060 97 24 40 C4 A8 91 84 3F 22 BA

00003070 BS 78 LS 96 Bes BF 82 95 54 74

00003080 FF FO SC 22 CB 59 7A LS 3D DA

00003090 93 4D 08 A8 DS DE 9F DF 77 9F

00003040 F7 33 33 9F F9 CC &7 3E 9F CF

000030B0 62 E2 58 69 E4 16 21 E2 42 4C

000030C0 42 &4 7D 51 7E 5F 1E 9B 87 EF

Figure 44 Start of compressed image

3D
aF
6D
28
T2
aF
69
aF
20
B4
21
=N
1
LE
a7
BZ
BC
o3
39
EB

32
T2
w0
aF
aF
T2
6E
6E
6B
47
39
51
21
62
=N
FEB
26
2B
BS
F1

29
=
Ta
T4
Ta
aa
67
65
65
0z
EBO
17
Ba
4B
95
ThB
CF
14
33
aD

aa
aa
65
63
aa
aa
20
ZC
Ta
03
21
=1
B4
in
F3
BF
3c
=
20
3E

aa
aa
73
65
aa
aa
4c
20
6E
EC
f=3=]
15
c?
TA
B3
67
B3
4D
F3
EF

aa
aa
73
Ta
aa
aa
63
62
65
BD
g6
25
aD
c?
Th
66
F3
g4
53
CAh

ormat (err=2) ...
out of memory...
invalid compress
ed format [(other
1...0F2 BXror...
length error....
UTncompressing Li

NUX. o e e done, b
ooting the kerne
AR R S S £

S TS LT
§Ee. . 570 hiQ.E.5
m. . J-0, bk . 1G]
—§QRAL" P shE=2g
HxE-9.,-Zz54.v
#ay rETe¥=Tedl ¢ gf
=M, ORYEwTweI<a
233¥0Igs¥I. 4. v,
baXi&. '4BLEn” .08
Bl Q~_. »¥18H] ZiE

After you take out the image starting from the gzip magic bytes, you can decompress the image using
any decompression utility that supports the gzip format. After it is decompressed you can load up the

image using IDA. (Figure 45)

EFunctions . O & x IDA Wiew-4 [@Strings windaw I @Hex View-& I @Structures | Lgﬂ Enurns t?__-,: m

iinctlon harne Ea o ==

[F] sub_coz15BFC

[7] sub_Co216834

Lf] sub_CDI16BFC ; Attributes: bp-based frame

[#] sub_co216D38

[F] sub_Coz16E1c sub_C8217C74

[F] sub_coz1roce

[F] sub_C0217638 var_2G= -8x2C

[F] sub_coziTsFc arg_B= 4

[F] sub_C02177E0 arg_4= 8

[7] sub_C02177F 4 HOU R12, SP

L] sub_COZLTCT4 STHFD SPt, {R4-R12,LR,PC}

[7] sub_coz18084 suB R11, R12, #4

[7] sub_c0218260 sug SP, SP, #4

[F] sub_C0z18304 LDR R12, [R11,#arg_u]

[F] sub_co21846C Hou R18, RO

(7] sub_co218558 HoY RO, R12,LSRH12

= CHP RO, #

[£] sub_C0z18DES HOU R7. R

[£] sub_c0210188 HOU RS. R2

£ sub_C0Z13E84 < STR R3, [R11,Hlvar_2C]

‘ b BCC loc_G6217CB8

Line 346 of 871 i

H8 Graphover.. O & X @ - = Y
LDR R3, =dword_CE1F7414
LDR R3, [R3]
ADD R3, R3, #0x36600
CHP RO, R3
BCC loc G6217CCC

100.00% (81,-11) (505,198) 0OOSFCTC COZ17C7C: sub COZ17C744+8

Figure 45 Kernel Image Disassembly

JFES2

From the whole layout, the JFFS2 file system is at the core of the data analysis. The boot loaders are
usually based on very generic code. Many interesting custom files are placed under the JFFS2 file system.
Identifying the JFFS2 file system from the raw NAND Flash image is relatively easy. Usually JFFS2 puts
specialized erasemarkers inside the spare column of each page. The erasemarkers are inserted when the
NAND Flash memory is formatted with JFFS2 file system tools. This indicates that the block is used by
JFFS2 and doesn’t need additional initialization. Ideally, the erasemarkers would be located at every first
page of each block. But, in reality it can present in every few blocks if the file system was created with a
block size different from the real NAND Flash memory block size. This doesn’t prevent JFFS2 from
working correctly, but might challenge performance.

O0OSE1A00 85 19 02z EO 46 00 00 OO 96 33 FE 32 81 00 00 00 ...aF...-3p2....
O0OSE1Al0 S6 00 00 OO0 B6 21 00 OO0 OO OO OD OD OO0 OD OO0 OO0 W...q!'.eeeivunnnn
00SE1A20 D7 50 OC 46 D7 50 OC 46 13 CF 0S 53 00 00 00 00 =P.FxP.F.I.S....
O0OSE1A30 02 00 00 OO0 02 00 OO0 OO0 OO OO OO OO0 DA 97 40 2C .ivevensannn u-g,
O0OSE1A40 7C 61 97 95 03 04 FF FF 85 19 02 EO 44 00 00 00 |a="..¥¥...aD...
OOSE1AS0 1D FB F7 98 F8 04 00 00 54 00 00 OO0 ED 41 00 00 .4:"@...T...1A..

OOSE1A60 F4 01 01 00 OO0 OO OO OO BS B1 27 47 BS Bl 27 47 O....... nx'Gpt'G
OOSE1A70 15 CF 05 53 00 00 00 00O OO0 00 00 00 00 00 00 00 .I.S............
OOSE1AS0 00 00 00 00 OO0 OO0 OO OO 80 C6 6C 64 85 19 02 EO€Eld...a
OOSE1A90 44 00 00 00 1D FB F7 98 F9 04 00 00 53 00 00 00 D....0s"0...5...
O0OSE1AR0 ED 41 00 00 F4 01 O1 OO OO OO0 OO OO BS B1 27 47 id..6....... nx'G
OOSE1ABO BS B1 27 47 15 CF 0S5 53 00 00 00 00 00 00 00 00 wp+'G.I.S........
O0SE1ACO 00 OO 0O OO OO OO OO OO0 OO OO OO OO 72 83 05 8F veevnnnn rf..
OOSE1ADO 85 19 0z EO CF 02z 00 00 49 1E 2B &1 F1 02 00 00 ...aI...I.+jf...
DOSE1AE0 02 00 00 00 ED 81 00 00 00 00 00 00 €8 02 00 00i.......E...
O0OSE1AFO 3A 00 00 OO0 34 00 OO0 OO0 34 00 OO0 00 OO0 0D 00 0D :...f..elcennnns
ODOSE1BO0 8B 0z 00 00 C8 02 00 OD 06 00 OO OO BB 12 12 DA <¢...E....... »..0

O0SE1B10 CS EE 2D IF 78 S5E 32 68 62 34 62 DO C4 64 BS 80 Ai-.x*Zhb:bbDid.€
O0SE1B20 99 89 91 89 89 CD DO €2 €2 00 08 38 D9 58 BS F9 = uxIpid..slxpn
OOS5E1B30 98 99 64 59 19 OC 54 OC 95 OC F8 D8 98 43 59 B8 “®dY..T.+.e@"CY,
OOSE1B40 84 D9 95 7C 23 80 D2 44 06 02 20 BE 2E 33 27 03 ,U«|#€0J.. %.3'.
OOSE1BSO 13 23 03 47 59 €5 F6 6E 03 05 71 SE 03 53 03 73 .#.GYién..q".5.s
OOS5E1B60 43 4B 23 03 53 4B 53 83 28 09 7E 23 43 AD 39 86 CKH#.SKSF(.~#C 9t
OOSE1B70 40 08 06 51 06 86 86 FAL 06 3C 10 73 58 C1 C6 18 @..Q.tt0.<.sXiE.
OOSE1B8B0 FO 82 78 DC C2 6C 4A A1 C1 AE 41 C8 86 32 81 0C &,xULlJ;i@rEt2..
OOSE1E90 DD D3 6E DO 38 1F AS S6 53 AE CD A3 ED 3B 2F 23 VOnbS. tS«Ifi:/#
OOSE1BAO 23 23 2B 03 73 63 2F 83 41 63 27 53 63 23 C3 CB ##+.sc¢/ fhc' ScHlE
OOSE1BBO C9 SF 8D CS 67 07 CF S6 DE 71 6B SB CF 91 6C 96 EV.ky.IVegk[I'l-
OOS5E1BCO 10 7D FD BF C2 41 AA 82 97 24 A7 9D 94 B3 F9 FD .}y Ak ,—$§.3%uy
O0OSE1BDO BS C6 23 27 24 19 OF 3E 8B 38 29 E9 78 27 A7 AC nE#'*,..>¢(8)éx'S§~
OOSE1BE0 F6 D8 E1 9E DF OE 35 BE 97 15 D4 4D 8D 52 BF D4 O@4az6.5%.0H.R:0O
OOSE1BFO 19 CF F8 B9 73 C6 F7 47 33 2E 73 AB 3F F2 6F S8E .I%*sE:+G3.s«?00%

ooseicop»[96 o2 so]FF FF [FH FF -SYY9YYYl.. ...

(0]0]:] ECC Bad block

indicator
(FF=Clean)

Erasemarker

Figure 46 JFFS2 Erase Marker location from a page and spare column bytes

After identifying the start of the JFFS2 file system, you can extract the whole image. You need to verify if
any bad blocks are present in the middle, check ECC for each block and remove the spare column from
the original bytes. To assist with this process, | released a tool called DumpFlash.py. To extract part of
the Flash memory, you just pass the start and end addresses after the —r option. You can put an output
file name after the —o option. The following command dumps out the JFFS2 file system (at address
0x0262c200 ~ 0x03084600) bytes from the flash.dmp file. (Figure 47)

python DumpFlash.py -r 0x0262c200 0x03084600 -o jffs2.dmp flash.dmp

Cff=et (k) 0D 01 02 03 04 05 06 07 0B 09 OA OB OC OD OE OF

0282Cl10 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF iy v odvdedy
02&62C1z0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF §4#iFFiddidvisyy
0262C130 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {999 dyeTiveivyy
0Z5zC1l40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF g irividody
0262C150 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF §4#iddisdidvivyy
0262Cle0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF o9y dvyivyyivyy
0262CL70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF YW ¥0¥oyeyiyveyyy
02&zCl80) FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF §9V§Tveviidvivyy
02&2C190 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF §U¥y9oyvyvyvivyy
OZSECLA0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF UW¥y@oyyviyyeydy
0262ZC1B0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {90 F7ididdisiy
0262C1C0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF V¥V oVvyvyvvvyy
02&8zClD0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF i iiudody
02&62ZC1EQ FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF §4#iFFidididdisiy

YTV IvyiveyvyTy
. ED.. .. 0570,
T . TR,

1 LDIKIDIE. *$L....
oo 0 0 oo oo oo oo O OO e R L L
[w0 .. 8D, ... i

Start of the JFFS2 01 01 oofRRCRRE R

: i 6...DDLKnD1K.:;L
Dzézcz70 (W file system

02620280 .
02620530 PP T P

026202 R0 O 1D1E1D1

0262C2E0 000 00 00 00 00 00 00 0o SRS A
02620200] S
0262C200] K2,
0262CZEQ q R ST T

0262C2F0 A 91 87 4C 00 0D 00 00 00 00 00 O0fESESRES AN
0262C300 il 4Te
02620310 = Ce
02620320 D Bopoocoooan ip.

02620330 C L

02620340] L
02620350 B el |=1h. .11
02620360] Eit58LtY. *hGTnl.
02620370 . GESZX. B, & . N
02620380 BT PR
02620390 F{-i8.HE,..£.¢.H
0262C3R0 L L kSBRIp e g, =T
0262C360 6 e [+ a0, 1&e

0262Caco i} MOIV::EIyn¥af. .o
028zC300 B e tn| . k. eI, ouEl
0252C3ED 5 RTATEE i PRY.TS BT |
0262C3F0 F 53 , SE£Ent Bd o=
02620400 FF EN i s AP

Figure 47 Example of start address of a JFFS2 file system

Mounting the JFFS2 file system using MTD

Now you can mount the JFFS2 raw image on the Linux operating system. First, you need to create an
MTD device. Load related Linux kernel modules like mtdram, mtdblock and jffs2 first. (Figure 48) This
creates an MTD device on the system.

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

Figure 48 Loading related kernel modules

Use the dd utility to initialize the data of the MTD block device and mount the device to an arbitrary
location. (Figure 49)

Figure 49 Mount MTD block device

After successful mounting, you can navigate and modify the file system on the fly. (Figure 50)

B2 root@kali: /tmp/jffs2 |£|Eléj

h

Figure 50 Mounted JFFS2 file system

Low level JFFS2 analysis

JFFS2 is a journaling file system. A journaling file system is one that keeps logs of changes to the file
system. This is very useful for embedded systems as it means they can be turned off any time without
any proper shutdown process without breaking the whole file system. You might lose some changes, but
the integrity of other major file systems is not affected. Journaling makes the file system more resistant
to corruption due to sudden shutdown. The fact that JFFS2 keeps file system changes can be very useful
from a forensic point of view.

To automate the process of analyzing the JFFS2 file system, | created the DumpJFFS2 project that can
handle the low level nature of the JFFS2 file system file. Using this tool, you can dump out the whole file
system without mounting. Based on the source code, you can even create your own custom logic to
analyze the low level JFFS2 file system.

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py

Modifying data and reattaching

The good thing with this JFFS2 mounting technique is that you have write access on the file system. You
can try to modify and patch any files on the system and take the JFFS2 raw image from the MTD device.
The dumped image is a valid JFFS2 file that can be mounted again. You can program the NAND flash with
this modified JFFS2 data.

dd if=/dev/wtdblock0 of=mtdblock0.dmp h=s=51Z2
13107040 records in

Figure 51 Dumping mtdblock device raw image

Writing to NAND Flash

After you make changes to the JFFS2 file system image, you need to place the OOB data before writing
to the Flash memory. The following command reconstructs a flat NAND Flash image from a memory
image of the JFFS2 file system. It reads the mtdblock0.dmp file dumped from the MTD device and adds
OOB data automatically, writing it to the mtdblLocke. oob.dmp file. It calculates ECC for each page and
adds the JFFS2 erasemarker for each block.

python DumpFlash.py -R -o mtdblock@.oob.dmp mtdblock®.dmp

Using this flat image, you can finally write it back to the original NAND Flash memory chip. With the
NAND reader/writer connected to a USB port, run following command:

python FlashTool.py -w mtdblock.mod.oob.dmp -R 0x12820 Oxffffffff

The -s option designates the start page number. The option 0x12820 designates the address of 0x12820
* (0x200 + 0x10) in this case (page size=0x100=512, spare column=0x10=16). The actual location it
writes is 0x262C200. This is the location from where | extracted the JFFS2 image.

Figure 52 shows what this NAND Flashing process looks like.

MAMND 54MiE .

[=
|

Figure 52 Writing the full image to NAND Flash

Re-soldering

After modifying raw data and writing it back to the Flash memory, it is time to re-solder the chip onto
the target system. The re-soldering process is not much different from standard SMT soldering.
Originally SMT was developed for automatic soldering of PCB components. So the chips are usually small
and the pitch of the pins is also relatively small. This makes soldering them to the PCB manually
challenging, but it is not extremely difficult when you get accustomed to it. There are many different
methodologies developed by many hobbyists. The method | used was just placing the chip on the pin
location and heating the pins using the soldering iron. This lets the solder residue (Figure 53) left from
the previous de-soldering process melt again. The chip is soldered again using this same solder.
Sometimes adding a small amount of solder paste onto each pin helps the chip to reattach to the board.
If this method doesn’t meet your requirements, you can remove any solder residue first and start with
new solder or solder paste. Various detailed techniques can be found on the Internet.

Figure 53 Solder residue

There are many pitfalls with SMT soldering and one of the big issues is bridging. The pitch for the NAND
flash TSOP48 model is 0.5 mm, which is extremely small. This means the solder can easily go over
multple pins and create shorts. (Figure 54) - be careful to ensure this doesn’t happen.

Figure 54 Bridge

One of the other big problems with re-soldering is possible damage to the board. (Figure 55) With the
de-soldering process, excessive heat is applied and it can damage the PCB board. With this in mind, you
should be extra careful when you re-solder the chips. One good thing with Flash memory, is that many
pins are not actually used. If the damaged patterns are not used, then the chips will still operate
normally. You should check with the chip datasheet to see if any damaged patterns are actually used by
the chip.

Figure 55 Damaged circuit board

For my case, the circuit for pin 48 was damaged but luckily the pin is never used by the chip. So
everything worked fine after re-soldering. The truth is that the pins that are not used have a greater
tendency to be damaged as they are not connected to any circuitry on the system. They are just glued to
the board without any connection to other components and it makes them more vulnerable to heat.

Tools

FlashTool — Python Implmentation of Flash reader/writer software

¢ https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

* Write support
* Fast sequential row read mode support
* More experimental code coming.
Enhanced NandTool (forked from original NandTool): NandTool with writing support

e https://github.com/ohjeongwook/NANDReader FTDI

* Write support
DumpFlash.py: Flash image manipulation tool (ECC, Bad block check)

e https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

DumplJFFS2.py: JFFS2 parsing tool

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

e https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py

Conclusion

Interacting directly with Flash memory is useful when JTAG can’t be used. This situation is becoming
more and more likely these days as some vendors obfuscate or remove JTAG interfaces to protect their
intellectual property. As a security researcher, you have a need for accessing the internals of embedded
systems. By directly interacting with a low level Flash memory interface, you have the benefit of
accessing data that can’t otherwise be retrieved. The entire process can be time consuming, but the
benefit is clear. The de-soldering method is referred to as a destructive method in reverse engineering
hardware. But, it is still possible to re-solder the chip to the system using SMT soldering methods. There
is a higher chance of damaging the circuit board than when working on a fresh, new PCB board, but the
chance for success is still high enough. Also, there are many factors to consider when extracting,
modifying and reconstructing a bare metal image with your modification like ECC, bad blocks and JFFS2
erasemarkers. You might try to modify code from many places like boot loaders, the kernel and the
JFFS2 root image. Thus, you can start on your way to researching embedded systems, even when JTAG
connections are not feasible.

Lastly, many USB thumb drives and other devices also use NAND Flash memory for storage and they
don’t have any JTAG points at all by design. Even though the data format saved on the memory will be
totally different from what is presented here, it could be beneficial to perform forensic analysis on these
devices using this method.

References
1. [Online] http://www.forbes.com/fdc/welcome_mijx.shtml.

2. [Online] http://www?2.electronicproducts.com/NAND_vs_NOR_flash_technology-article-FEBMSY1-
feb2002-html.aspx.

3. [Online] http://www.ftdichip.com/Products/ICs/FT2232H.htm.

4. [Online] http://www.techradar.com/us/news/computing/how-error-detection-and-correction-
works-1080736.

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py

