
Dynamic Taint Propagation

Finding Vulnerabilities
Without Attacking

Brian Chess / Jacob West
Fortify Software

2.21.08

Overview

• Motivation
• Dynamic taint propagation
• Sources of inaccuracy
• Integrating with QA
• Related work
• Parting thoughts

MOTIVATION

Existential Quantification

“there exists”

There exists
a vulnerability

(again).

Universal Quantification

“for all”

For all bad things that
might happen,

the program is safe.

Security vs. Software Development

Software Development

Security

Security vs. Software Development

Software Development

Security

Programmers Testers

Are you going to give me Yet
Another Lecture About Static

Analysis (YALASA)?

• No
• Focus on QA
• Using static analysis requires

understanding code

Team Sizes at Microsoft

QA Testers vs. Security Testers

Functional Testers Security Testers
Know the program. Know security.

Need high functional
coverage.

Need to find at least
one vulnerability.

Lots of time and
resources

(comparatively).

Often arrive at the
party late and are

asked to leave early.

Typical Software Testing

Program
Under Test

Typical Security Testing

Program
Under Test

x x

Clear indication
of a vulnerabilityTest case to prove it.

Fault Injection Failings

• Bad input derails normal program flow
• Cannot mutate functional tests and

retain coverage
Add

to cart
Enter

Address
Enter
CC

Input Input Input

Fault Injection Failings

• Result: bad test coverage
• Result: missed vulnerabilities

Add
to cart

Enter
Address

Enter
CC

Input Input Input

Problem Summary

• QA has, security team lacks:
– Good test coverage
– Time and resources

• Security team has, QA lacks:
– Security clue

Involve QA in Security

• Ease of use
– Favor false negatives over false positives
– Expect security team to test too

• Leverage existing QA tests
– Achieve high coverage
– Must be transformed into security tests

DYNAMIC TAINT PROPAGATION

Dynamic Taint Propagation

• Follow untrusted data and identify
points where they are misused

Example: SQL Injection
...
user = request.getParameter("user");
try {
sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";
stmt.executeQuery(sql);
}
...

Tracking Taint

1. Associate taint marker with untrusted
input as it enters the program

2. Propagate markers when string
values are copied or concatenated

3. Report vulnerabilities when tainted
strings are passed to sensitive sinks

Java: Foundation

• Add taint storage to java.lang.String

Length Body

Length Taint Body

Java: Foundation

• StringBuilder and StringBuffer
propagate taint markers appropriately

Tainted Tainted+ = Tainted

Untainted + = TaintedTainted

Untainted + = UntaintedUntainted

Java: Sources

• Instrument methods that introduce input
to set taint markers, such as:
– HttpServletRequest.getParameter()
– PreparedStatement.executeQuery()
– FileReader.read()
– System.getenv()
– ...

Java: Sinks

• Instrument sensitive methods to check for
taint marker before executing, such as:
– Statement.executeQuery()
– JspWriter.print()
– new File()
– Runtime.exec()
– ...

Example: SQL Injection
user = request.getParameter("user");

try {
sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";

stmt.executeQuery(sql);
}

TaintUtil.setTaint(user, 1);

TaintUtil.setTaint(sql,user.getTaint());
TaintUtil.checkTaint(sql);

Results Overview

Security Coverage

SQL Injection Issue

Source

Sink

Severity Category URL

Critical SQL Injection
/splc/listMyItems.do

Class Line
com.order.splc.ItemService

196
Query Stack Trace

select * from item where
item name = ‘adam‘ and
...

java.lang.Throwable at
StackTrace$FirstNested$SecondNested.

<init>(StackTrace.java:267) at
StackTrace$FirstNested.

<init>(StackTrace.java:256) at StackTrace.
<init>(StackTrace.java:246) at StackTrace.

main(StackTrace.java:70)

Where is the Problem?

Instrumentation

• Instrument JRE classes once
• Two ways to instrument program:

– Compile-time
• Rewrite the program's class files on disk

– Runtime
• Augment class loader to rewrite program

Aspect-Oriented Programming

• Express cross-cutting concerns
independently from logic (aspects)

• Open source frameworks
– AspectJ (Java)
– AspectDNG (.NET)

• Could build home-brew instrumentation
on top of bytecode library (BCEL, ASM)

Example

public aspect SQLInjectionCore extends ... {
//Statement
pointcut sqlInjectionStatement(String sql):
(call(ResultSet Statement+.executeQuery(String))
&& args(sql))
...

}

Instrument Inside or Outside?

• Inside function body
– Lower instrumentation cost

• Outside function call
– Lower runtime cost / better reporting

Types of Taint

• Track distinct sources of untrusted input
– Report XSS on data from the Web or

database, but not from the file system
• Distinguish between different sources

when reporting vulnerabilities
– Prioritize remotely exploitable vulnerabilites

Java: Foundation – Round 2

• Add taint storage and source information
to java.lang.String storage

Length Taint

Length Taint Source Body

Body

Writing Rules

• Identifying the right methods is critical
– Missing just one source or sink can be fatal

• Leverage experience from static analysis
– Knowledge of security-relevant APIs

SOURCES OF INACCURACY
Going Wrong

Types of Inaccuracy

• False positives: erroneous bug reports
– Painful for tool user

• False negatives: unreported bugs
– Uh oh

False Positives:
Unrecognized Input Validation
user = request.getParameter("user");
if (!InputUtil.alphaOnly(user)) {
return false;

}
try {
sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";
stmt.executeQuery(sql);

}

False Positives:
Impossible Ctl Flow Paths
• Paths that regular data can take that

malicious data cannot take
• Solution: cleanse rules

– Remove taint when String is input to a
regular expression, compared to static
string, etc

Countering False Positives:
Bug Verification

• Training wheels for security testers
• Show which inputs to attack
• Suggest attack data
• Monitor call sites to determine if attack

succeeds

False Negatives

• Taint can go where we cannot follow
– String decomposition
– Native code
– Written to file or database and read back

• Bad cleanse rules
• Poor test coverage

False Negatives:
String Decomposition
StringBuffer sb = new StringBuffer();
for (int i=0; i<tainted.length(); i++){
sb.append(tainted.charAt(i));

}
String untainted = sb.toString();
return untainted;

False Negatives:
Insufficient Input Validation
user = request.getParameter("user");
if (!InputUtil.alphaOnly(user)) {
return false;

}
try {
sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";
stmt.executeQuery(sql);

}

False Negatives:
Poor Test Coverage
• Only looks at paths that are executed
• Bad QA Testing == Bad Security

Testing

INTEGRATING WITH QA
Practical Considerations

In Practice

• Deployment may involve more or less
involvement from central security team

Central Security Quality Assurance

Deployment Activities

Central Security Quality Assurance
Instrumentation

Functional testing
Triage and Verification

Reporting bugs

Instrumentation

• Either QA or Security
• Key considerations

– Cover program behavior
– Cover security threats

Functional Testing

• QA
• Key considerations

– Maximize coverage (existing goal)
– Security knowledge not required

Triage and Verification

• Either QA or Security
• Key considerations

– Understand issues in program context
– Security knowledge

• Hand-holding to create "exploits"
• Different bugs to different auditors
• Targeted training

Reporting Bugs

• Either QA or Security
• Key considerations

– Bug reporting conventions / protocols
– Solid remediation advice

RELATED WORK
Other people’s business

Related Work

• Perl
• Taint propagation for Java
• Constraint propagation for C
• Fine-grained taint propagation for C
• Taint propagation for PHP

Perl

#!/usr/bin/perl –T
my $arg=shift;
system($arg);

> Insecure $ENV{PATH }

Perl

#!/usr/bin/perl –T
my $arg=shift;
$ENV{PATH} = "/bin";
system($arg);

> Insecure dependency in system
while running with -T switch

Perl

• Automatically removes taint when string
is used in regex

• Meant for active defense, not bug
finding, so error messages are less than
ideal

Taint Propagation for Java

• Haldar, Chandra, Franz (UC Irvine)
ACSAC ‘05

• Taints Java String objects
• Active protection, not bug detection
• Notion of taint flags, but no impl

Constraint Propagation for C

• Larsen and Austin (U Michigan)
USENIX ‘03

• Keep track of symbolic constraints on
input while program is running

• Spot bugs where input is under-
constrained

• Found multiple bugs in OpenSSH

Constraint Propagation for C

unsigned int x;
int array[5];
scanf(“%d”, &x);
if (x > 4) die();
x++;
array[x]= 0;

x = 2
x = 2
x = 3
OK

0 ≤ x ≤ ∞
0 ≤ x ≤ 4
0 ≤ x ≤ 5
ERROR!

Concrete
ExecutionCode

Symbolic
Execution

Fine-grained Taint Propagation

• Xu, Bhatkar, Sekar (Stony Brook), USENIX ‘06
• Keep explicit taint state for every byte in the

program
• Requires large chunk of program address

space
• Clever optimizations make performance penalty

bearable in many cases

Fine-grained Taint Propagation
Program address space

00000000

FFFFFFFF

read(f, x, len);

Taint map

memcpy(y, x, len);

Fine-grained Taint Propagation

• Can detect most injection attacks
– Buffer overflow, format string attacks, SQL

injection, command injection

• Works for interpreted languages with
native interpreters (PHP).

PHP

• Easier to do fine-grained analysis
– all program data represented with native

data structures
• Augment interpreter to propagate taint
• Small performance penalty
• Core GRASP
• Our vote: build it into the std interpreter

Static Analysis
(YALASA)

• Advantage
– can simulate execution of all possible

paths
• Disadvantage

– necessarily less precise
– does not know which paths are likely and

which are unlikely

SUMMARY

Conclusions

• Security is coming to QA!
• Lessons from security in development

– Target process steps at strengths
– Designs tools for the right audience
– Use targeted training to bolster capabilities

Questions?

Brian Chess
brian@fortify.com

Jacob West
jacob@fortify.com

	Dynamic Taint Propagation
	Overview
	MOTIVATION
	Existential Quantification
	Universal Quantification
	Security vs. Software Development
	Security vs. Software Development
	Are you going to give me Yet Another Lecture About Static Analysis (YALASA)?
	Team Sizes at Microsoft
	QA Testers vs. Security Testers
	Typical Software Testing
	Typical Security Testing
	Fault Injection Failings
	Fault Injection Failings
	Problem Summary
	Involve QA in Security
	DYNAMIC TAINT PROPAGATION
	Dynamic Taint Propagation
	Example: SQL Injection
	Tracking Taint
	Java: Foundation
	Java: Foundation
	Java: Sources
	Java: Sinks
	Example: SQL Injection
	Results Overview
	Security Coverage
	SQL Injection Issue
	Source
	Sink
	Where is the Problem?
	Instrumentation
	Aspect-Oriented Programming
	Example
	Instrument Inside or Outside?
	Types of Taint
	Java: Foundation – Round 2
	Writing Rules
	SOURCES OF INACCURACY
	Types of Inaccuracy
	False Positives:�Unrecognized Input Validation
	False Positives:�Impossible Ctl Flow Paths
	Countering False Positives:�Bug Verification�
	False Negatives
	False Negatives:�String Decomposition
	False Negatives:�Insufficient Input Validation
	False Negatives:�Poor Test Coverage
	INTEGRATING WITH QA
	In Practice
	Deployment Activities
	Instrumentation
	Functional Testing
	Triage and Verification
	Reporting Bugs
	RELATED WORK
	Related Work
	Perl
	Perl
	Perl
	Taint Propagation for Java
	Constraint Propagation for C
	Constraint Propagation for C
	Fine-grained Taint Propagation
	Fine-grained Taint Propagation
	Fine-grained Taint Propagation
	PHP�
	Static Analysis�(YALASA)
	SUMMARY
	Conclusions
	Questions?

