1

Mac OS X is constantly attracting new users. Given that fact, in the last few
years researchers focused more and more on this topic highlighting a number of
security concerns, mainly caused by the lack of modern security counter mea-
sures. Nonetheless there is a lack of advanced techniques and tools that are
already present and used on other OSes instead. In this paper a technique, rele-
vant both for anti-forensics and for penetration testing, is explained. Specifically

Let your Mach-O fly

Vincenzo lozzo
vincenzo.iozzo@zynamics.com

January 15, 2009

Abstract

Mac OS X is starting to spread among users, so new exploitation
techniques have to be discovered. Even if a lot of interesting ways of
exploitation on OSX were presented in the past, the lack of anti-forensics
techniques is clear.

The talk is focused on an in-memory injection technique. Specifically,
how it is possible to inject into a victim’s machine any kind of binaries
ranging from your own piece of code to real applications like Safari. This is
accomplished without leaving traces on the hard disk and without creating
a new process, since the whole exploitation is performed in memory.

If an attacker is able to execute code in the target machine, it is possible to
run this attack instead of a classic shellcode and to use it as a trampoline
for higher-lever payloads.

Other similar payloads like meterpreter or meterpretux[11] exist but none
of them is able to run on Mac OS X. Besides, many of these techniques
require to run specific crafted binaries, that way precompiled applications
are left out from the possible range of payloads.

Introduction

the proposed technique will address two issues:

e Definitive anti-forensics[l] which targets the acquisition phase of a
forensics investigation, ruining the evidence or making it impossible to

acquire.

e Two-stage shellcode injection which allows an attacker to inject a high

level payload in the target system.

Header

Load commands

Segment command 1 —

Segment command 2

Data

Section 1 data

Section 2 data

Segment 1
3

Section 3 data

Section 4 data

Section 5 data

Segment 2

Section n data

Figure 1: The format of a Mach-O file. (Copyright Apple Inc.)

The remainder of this paper is organized as follows. Section 1.1 provides
an explanation of the Mach-O file format. Section 1.2 details how OSX kernel
executes binaries. Section 2 describes the proposed technique. Section 3 supplies
a description of a technique used to gather non-exported symbols from a
binary, defeating libraries address space layout randomization. Section 4 briefly
draws conclusions and outlines future research perspectives.

1.1 Mach-O file format specification

The Mach-O file format is the standard used by Mac OS X ABI|[2] to store
binaries on the disk. A Mach-O is divided into three major parts, as shown in
Figure 1:

e Header structure which contains information on the target architecture
and specified options needed to interpreter the rest of the file.

e Load commands which specify among other information the layout of
the file in the virtual memory, the location of the symbol table, and the
registers state of the main thread at the beginning of the execution.

e Segments which may contain from zero to two hundred fifty-five sec-
tions. Each segment defines a region of the virtual memory and its sec-
tions represent code or data needed to execute the binary.

Each segment contains information on the address range used in the virtual
memory and protection attributes for the memory region. All segments must
be aligned on virtual memory page size.

Some important segments are:

Mach-0 l<—— Stack Pointer
Address

Arge

Argv]
0

Envp[]

0

exec_path ptr
0

exec_path

Argv[] strings

Envp(] strings

Figure 2: The stack of the binary before calling the dynamic linker.

e __PAGEZERO which is stored at virtual memory location 0. This seg-
ment has no protection flags assigned, therefore accessing this region will
result in a memory violation.

e __TEXT which holds the binary code and read-only data. This segment
contains only readable and executable bytes, for this reason the writing
protection flag is not present. The first page of this segment also contains
the header of the binary.

e __DATA which contains the binary data. This segment has both reading
and writing protection flags set.

e _ LINKEDIT which stores information such as the symbol table, string
table, etc etc. for the linker. This segment has both reading and writing
protection flags set.

Sections inherit protection flags from segments. They are used for defining
the content of specific regions within segments virtual memory.

1.2 OSX binaries execution

The execution of a binary on Mac OS X is conducted by two entities : the kernel
and the dynamic linker[3]. The first part of the execution process is conducted
by the kernel, whereas the second by the dynamic linker. When a process is
launched the kernel maps the dynamic linker at a fixed address onto the process
address space. After that it parses the header structure and all segments of the
binary and loads them in the correct virtual memory regions. Before calling the
dynamic linker a new stack is created.

The stack layout is as it is shown in Figure 2. It should be noticed that the
address of the binary is pushed into the stack in order to let the dynamic linker

- (2)MachoFly auto-loader + arbitrary Mach-o >

<—— (3) arbitrary Mach-o response/output — ‘
B 7\
Attacker Victim

- —— (1) Exploit code + MachoFly payload —> ?é[:;;wFly loader
- =
[1

4

Figure 3: The attack flow graph

handle it.

During the second phase the dynamic linker parses the binary and resolves
symbols, library dependencies and so forth, before jumping to the binary entry
point. It must be noticed that all the libraries are recursively loaded by the
dynamic linker itself, so the kernel does not play a role in this phase.

2 Proposed technique

In the past Ripe and Pluf[4] proposed an attack that is able to use userland-
exec[5] on a victim’s machine. Their attack encapsulated a shellcode and a
crafted stack into the binary file that it is afterwards sent to the victim. Upon
receiving the crafted binary the shellcode is executed and an userland-exec at-
tack is performed. Despite its usefulness the attack suffers some problems:

e It only works with ELF files on Linux.
e It doesn’t work if ASLR is enabled.
e Only static binaries can be injected.

Although our technique uses a similar method to craft the binary and it is
basically an userland-exec attack, it should be considered new because both the
target files and the payload construction differ hugely. Figure 3 illustrates the
basic flow graph of our attack.

In this section we detail how we craft the binary to execute on the victim’s
machine and how our shellcode works.

2.1 Crafted binary

Nemo[6] and Roy g biv[7] separately explain a technique for inserting ma-
licious code in the __PAGEZERO segment. This infection attack changes
__PAGEZERO protection flags and stores some code at the end of the Mach-o
file, mapping it at a non-allocated arbitrary address in the virtual memory.
We employ this technique to store malicious code inside the injected binary.
First we create a crafted stack identical to the one shown in Figure 2.

Next we append the stack and our shellcode at the end of the file by using the
__PAGEZERO infection technique. Finally, we overwrite the first byte of the

MODIFIED HEADER

INFECTED __PAGEZERO

load commands and segments

sections and binary data

SHELLCODE <

CRAFTED STACK

Y

Figure 4: Injected binary layout.

header structure, which usually contains the magic number, with the address of
the shellcode.
The resulting Mach-O layout is shown in Figure 4.

2.2 Shellcode specification

The role of our shellcode is to impersonate the kernel and conduct its tasks. The
code parses load commands, when a segment is encountered the virtual memory
used by the segment is firstly unmapped to wipe the old data contained in it,
then it is mapped again with the correct protection flags, lastly the segment is
copied into the right position.

A special role plays the __PAGEZERO segment, in fact it contains the crafted
stack for the binary. When the shellcode encounters this segment it unmaps the
old data and copies the new stack into it. Finally the esp pointer is stored in
order to be used when the dynamic linker is called.

Other load commands are ignored as they are handled by the dynamic linker.
When the shellcode is executed in the address space of the process both the
libraries allocated by the attacked process and the dynamic linker are present.
The latter maintains a list of all allocated libraries; since all binaries rely on
libSystem, our injected binary will use the one already allocated. In order
to work correctly, libSystem, when allocated, uses some variables to initialize
heaps and parse environ and argument variables. If a new process is launched
and those variables are set a crash will occur while allocating memory or parsing
arguments. For this reason we need to wipe these control variables in our
shellcode, before calling the dynamic linker.

The last part of the shellcode is in charge of cleaning registers, adjusting the
stack pointer so that the address of the binary is the first word on the stack and
calling the dynamic linker entry point, which is always at a fixed address.

3 Defeat libraries address space layout random-
ization

As said in the previous section, one of the tasks of our shellcode is to wipe some
non-exported variables used by libSystem. Since they are not exported we
cannot easily retrieve addresses for the aforementioned variables by simply us-
ing dlopen()/dlsym() calls combination; neither it is possible to calculate their
address a priori.

In fact since Leopard release Apple has introduced ASLR for libraries. When
either the system or a library is updated update_dyld_shared_cache(1) per-
forms the randomization|8].

In this section a method for circumventing this problem is detailed. Firstly
we retrieve the addresses of some exported functions of the default dynamic
linker, dyld. Then we search for libSystem base address and for the base
address of the __DATA segment. Finally, we open libSystem, which is present
on the disk, searching for the symbols we need and we adjust them with the
__DATA segment base address. Symbol names are hashed using Dan Bernstein
algorithm in order to reduce memory occupation.

In section 3.1 we provide an explanation on how to gather symbols from the
dynamic linker. In section 3.2 we describe how to find non-exported symbols
contained in a library mapped in the process address space.

3.1 Gathering dyld functions addresses

In order to obtain the randomized base address of a library there are two pos-
sibilities:

e Parse the file dyld_shared_cache_i386.map and search for library entry.

e Use some functions exported by the default dynamic linker, performing
the whole task in-memory.

We have chosen the second approach as it is cleaner and less error-prone than
the first one. Employed functions are:

o _dyld_image_count() used to retrieve the number of linked libraries of
a process.

e _dyld_get_image_header() used to retrieve the base address of each li-
brary.

e _dyld_get_image name() used to retrieve the name of a given library.

The symbol table and the string table in Mach-O files are stored in the __LINKEDIT
segment. To gather addresses of these functions we parse the binary searching
for the symbol table and retrieve the addresses of the symbols.

3.2 Retrieve non-exported symbols

Having obtained dyld’s functions addresses we can retrieve the base address
of libSystem. When a binary is executed non-exported symbols are removed
from the symbol table making it impossible to compute their addresses on the
fly. For that reason we divided this process into two tasks:

e We calculate the base address of the __DATA segment where symbols
are placed, parsing the header of the libSystem present in the process
address space.

e We open libSystem binary and parse the symbol tables to retrieve ad-
dresses we are interested in.

Lastly, we need to relocate symbols by using the calculated address of the
__DATA segment. For Mac OS X Leopard we need to search for the following
symbols:

e _malloc_def_zone_state
e NXArgv_pointer
e _malloc_num_zones

e __keymgr_global

4 Conclusion

In this paper we have shown that it is possible to inject a binary of any sort
in a victim’s machine without either leaving traces on the hard disk or calling
execve(2). We think this technique is very effective and should be stopped by
employing common memory protection counter-measures. Nonetheless it is still
possible to detect this kind of attack by using an anomaly based IDS system|[9)].
Though this attack we have been able to inject a wide range of binaries from
simple command line utilities like Is to complex applications like Safari. We
have also demonstrated that ASLR adopted only for libraries does not block a
common set of attacks.

Further developments of this work may include employing encryption to avoid
NIDS detection, using cavity infector[10] to store shellcode in the injected binary
and porting this technique to iPhones to evade code signing protection.

Acknowledgments

The author would like to thank, for a number of ideas and discussions Stefano
Zanero, Dino Dai Zovi, Charles Miller and Halvar Flake.

References
[1] Mark Pollitt: Computer Forensics: an approach to evidence in cyberspace.
[2] Apple Inc.: Mac OS X ABI Mach-O File Format Reference.
[3] Apple Inc.: Introduction to Mach-O Programming Topics.
[4] Pluf, Ripe: Advanced Antiforensics SELF.
[6] The Grugq: The Design and Implementation of ul_exec.
[6] Nemo: Infecting the Mach-o Object Format.
[7] Roy g biv: Infecting Mach-O Files.
[8] Dino Dai Zovi: Mac OS Xploitation.

[9] S. Zanero, F. Maggi, V. lozzo: Seeing the invisible: Forensic uses of
Anomaly Detection and Machine Learning.

[10] Vincenzo Tozzo: Mach-O reversing and abusing, DeepSec 2008.

[11] Samuel Dralet, Julien Tinnes Meterpretux project

http://developer.apple.com/DOCUMENTATION/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
http://developer.apple.com/DOCUMENTATION/DeveloperTools/Conceptual/MachOTopics/introduction.html
http://www.phrack.org/issues.html?issue=63&id=11
http://securityfocus.com/archive/1/348638/2003-12-29/2004-01-04/0
file:www.felinemenace.org/~nemo/slides/mach-o_infection.ppt
http://vx.netlux.org/lib/vrg01.html
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D1T1%20-%20Dino%20Dai%20Zovi%20-%20Mac%20OS%20Xploitation.pdf
http://portal.acm.org/citation.cfm?id=1368514
http://portal.acm.org/citation.cfm?id=1368514
https://deepsec.net/docs/speaker.html#viozzo
http://meterpretux.s34l.org/

	Introduction
	Mach-O file format specification
	OSX binaries execution

	Proposed technique
	Crafted binary
	Shellcode specification

	Defeat libraries address space layout randomization
	Gathering dyld functions addresses
	Retrieve non-exported symbols

	Conclusion

