
Bypassing ASLR by predicting a
process’ randomization

Hagen Fritsch <fritsch+stacksmashing@in.tum.de> January 23nd, 2009

Abstract

A flaw in the random number generator calling function can be used to calculate ran-

domization values used by ASLR for up to two minutes after a target process has been

launched. The attack will only work locally, with a theoretical likelihood of success of
1

2.5
, practical implications however lead to a lesser likelihood. If the attacker launches the

target process himself, the likelihood becomes one. Since ASLR’s purpose is to harden

systems against buffer overflow exploits, several supposed-unexploitable bugs may be

considered harmful now.

1 ASLR and the randomization bug

Address Space Layout Randomization is used to randomize parts of the address space

to prevent attackers from knowing exact addresses which are of use for exploitations.

For randomization there are two functions in use: randomize range and arch align stack

which both call get random int to obtain their randomness. Additionally if re-keying

is assumed to happen every second, the re-key interval should be set upropriately.

unsigned int get_random_int(void)

{

/*

* Use IP ’s RNG. It suits our purpose perfectly: it re-keys itself

* every second , from the entropy pool (and thus creates a limited

* drain on it), and uses halfMD4Transform within the second. We

* also mix it with jiffies and the PID:

*/

return secure_ip_id ((__force __be32)(current ->pid + jiffies));

}

__u32 secure_ip_id(__be32 daddr)

{

struct keydata *keyptr;

__u32 hash [4];

keyptr = get_keyptr ();

/*

* Pick a unique starting offset for each IP destination.

* The dest ip address is placed in the starting vector ,

* which is then hashed with random data.

*

hash [0] = (__force __u32)daddr;

hash [1] = keyptr ->secret [9];

hash [2] = keyptr ->secret [10];

hash [3] = keyptr ->secret [11];

return half_md4_transform(hash , keyptr ->secret);

}

As we can see, the output of get random int depends on the pid, jiffies and the

secret in keyptr. Now reading the comment we see the assumption: “it re-keys itself

every second”. This means that the secure ip id will output the same value if called

with the same input within one second.

But that’s not all to the bug. A look at rekey seq generator shows the following:

schedule_delayed_work (&rekey_work , REKEY_INTERVAL);

Where REKEY INTERVAL is #defined as (300 * HZ), which is five minutes instead of one

second.

2 Exploiting the bug

As we saw, the random number function has three parameters and can be seen as follows:

prf (s , j + p) where s is the secret from the IP stack being supposed to change every

second, j is the jiffies which tick at a clock rate of HZ (usually each 4ms) and p is the

pid of the current process.

If an attacker manages to call execve(2) with his desired target process within one

jiffy (i.e. 4ms) after his process was launched, then the output of the prf function will

be the same since neither pid p nor jiffies j changed. The secret s did not change

either and would most likely also not change if re-keying was in fact every second. Thus

the target process will use the very same randomization.

2.1 Predicting the randomization of a foreign process

Since within each timeframe of approximately five minutes the output of prf only de-

pends on j + p, the question arises if such output can be pre- or post-produced. An

2

attacker is assumed to be a local user without root privileges. Thus he cannot call prf

directly, and he also does not know the value of j as j is an internal kernel variable.

In the following we assume a target process is launched at t0. This is known to

the attacker, who thus also knows the time difference ∆t = tnow − t0 which implies

∆j = ∆t/HZ. Simple math shows, that the pid the attacker needs to get is p0 + j0 =

pattack + jattack ⇒ pattack = p0 −∆j = p0 − tattack−t0
HZ

.

Thus an attacker has a time-frame of up to two minutes (depending on the pid of the

target process) to get a process with a desired process id to read out its randomization.

Process ids are completely deterministic, and a process can spawn child processes until

it reaches a pid close to the required attack pid. The missing offset can be added by

waiting for jiffies to increase.

The attacker does not know the exact time when the target process was started. It can

read out the /proc/$pid/stat file and gets a time-stamp with a granularity of USER HZ

which is usually 10ms. Thus when calculating the attack pid, the attacker only has an

accuracy of 2
5
.

The exploiting process can save randomization values for a range of outputs of prf .

Within a process he or she can call execve to restart and output another randomization,

thus an attacker is likely to save the output of prf (s , j + p + i) ∀i ∈ [−x , x]. If the

attacker has multiple shots for exploiting the target, he can increase the likelihood of

having acquired the correct randomization values up to absolute certainty with just a

few guesses.

A not-yet-perfectly-optimized proof-of-concept demo program can be found at http:

//itooktheredpill.dyndns.org/.

2.2 Further impact

There has not yet been any research whether the output of the secure ip id function

with IP packets can be used to leak randomization bits too. If there were a leakage that

the attacker could read over the network, other attack scenarios need to be considered

too.

3 Mitigation

The random number function should be fixed, so that calling it also modifies the seed

and makes the output entirely unpredictable. Additionally if re-keying is assumed to

happen every second, the re-key interval should be set up appropriately. There is no

other easy work-around.

3

http://itooktheredpill.dyndns.org/
http://itooktheredpill.dyndns.org/

	ASLR and the randomization bug
	Exploiting the bug
	Predicting the randomization of a foreign process
	Further impact

	Mitigation

