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Overview

* Give a brief overview of the emulation-
based security testing

* Introduction to VEX

* Formal ism

* Implementation details
* Benchmark programs



What is it?

* A automated proof in an error or a pattern
we are looking for

-~ Detected violation of range or bondary |imits
~ Convergence to an inappropriate point
* Methods for model ing of symbolic memory

- |t periodically determines checks for specific
user data or functionality can be bypassed

* Bug-finding during simulated execution of
the computer program

- Using valgrind “tool plug-in”



Example: bounds checking on
statlc array

8048387 sub $0x18, %$esp
804838a sub $0x4, $esp
804838d push $0xf
804838f push $0x0

8048391 lea -0xf (%ebp), $Seax Ox7572626a
8048394 push %eax

8048395 call 80482cc <memset@plt> 0x756c6f6e
804839%9a add $0x10, %esp

804839d sub S0x4, $esp 0x61727a69
80483a0 push $0xf

80483a2 pushl 0x8 (%ebp) 0x73736f6d
80483a5 1lea -0xf (%ebp), Seax

80483a8 push %eax Oxbf863b00
80483a9 call 80482ec <strncatl@plt>

80483ae add $0x10, %esp




Problem Statement

* Flaws may pass through the software checks

* Error—checking tool detects something bad
happening, but not how error can be
triggered

* Memory—to—Memory propagation cannot
address some situations

* Doesn’t perform automatic crafted
manipulations trying to replace legitimate
memory to trigger bug



Emulation—-based Method

* Abusing of self-modifying code

~ Translation, instrumentation and compilation
to machine code

* Math background

~ Very useful in computing sets of states

~ Ensuring correctness of the model that l|eads
to the error

* Error trace that leads to an error state
- Mcre nrecise understanding of entry pcints



Dealing with VEX:intermediate
representation

* Library for instrumentation or translation

* Converts blocks of machine code to an
intermediate representation

* Provides usefull operations for Ilow—level
memory manager

* Architecture—neutral Intermediate
representation



VEX interface overview

* |[nstrumentation suports:
VgCal I backClosure:

~ Thread requesting the translation
~ GQuest address: redirected and non-redirected

* Superblocks represents instructions

* Guest state layout contains stack pointer
and program counter

* Byte ranges of original code is available

* Native word of Simulated/Real CPU have
easy control



VEX interface, main fuctions

* VG_(basic_tool_funcs)

~ This is enough for initialisation
* VG_(needs_client_requests)

~ Trapdoor mechanism
* VG_(needs_syscal | _wrapper)

- Trackable events before and/or after system
calls

* VG_(needs_mal loc_replacement)
-~ Replace behaviour of friends fuctions



EX interface, some more
unctions

* \G_(track_new _mem_startup)

- Memory events notified to the appropriate
function

* VG_(track_new_mem_stack)
-~ Track start of stack
* VG_(track_pre_mem_write)
- Cal led before an event of memory write

* Plus fuctions, read/writer register
events, thread events, client requests,
etc.



VEX IR description

* Super blocks (IRSB) are blocks of
simulated instruction

* Each |IRSB contains a |list of statements
(IRStmt) with side effects

- storing a value to memory
—assigning to a temporary variable

* |[IRStmt may have expressions (IRExpr)
without side effects

—arithmetic expressions
-~ |oads from memory



Guest code addresses

8048384

55

push %ebp

IMark(0x8048384, 1)

t0 = GET:132(20)
t19 = GET:132(16)

t18 = Sub32(t19,0x4:132)

PUT(16) = 118
STle(t18) = t0

8048385

89 eb

mov  %esp,%ebp

IMark(0x8048385, 2)

PUT(20) = t18

8048387

83 ec 18

sub $0x18,%esp

IMark(0x8048387, 3)
t2 = Sub32(t18,0x18:132)

804838a

83 ec 04

sub $0x4,%esp

IMark(0x804838A, 3)
t5 = Sub32(12,0x4:132)

PUT(32) = 0x6:132

PUT
PUT
PUT

(36)
(40)
(44)

=12
= 0x4:132
= 0x0:132




How does this approach work?

* Analyse programs at run—-time at the level
of intermediate representation

- Modeling, Specification and Verification

* State transition system
* Temporal Logic
* Algorithm



Model Checking

* Converts a design into a formal ism: Memory
Graph

* Find a set of states that satisfy a
temporal logic formula

~ Reverse Tainting Analysis



Network Tainting

* Network is the most |ikely vector of
attack

* Data from network
* File descriptions tracking

~ Trace all inputs from open file description

* open, socket, connect, accept, socketpair, and
close



Locatl?g Potential
Manipulation

* Look at chunks of guest state

* Parameter error is written
- VG_(get_ThreadState)

* Mark shadow area as valid

* Characteristics:

- To set these events VG_(track pre_reg read)
and VG _(track post reg write) are called

- Access area of guest’'s shadow state using
VG_(set _shadow state area)() and
VG_(get_shadow state area)()

- Record definedness at [offset, offset+tlen)



Manipulation Layout

arg 3

arg 2

arg 1

SYS xxx(arg 1, arg 2, arg 3, ...);



Locating roots (CWE)

. Ar§ument Injection or Modification (ID:
88

* Return of Wrong Status Code (ID: 393)
* NULL Pointer Dereference (ID: 476)



Scanning invalid operation

* Hacking pointer check

~ Checks accesses to generate a set of tainted
value

* Write-what—-where conditions

- Adding instructions to VEX IR translated back
to machine code

* How to we get their contents/location?

~ Pointer: for each possible pointer in memory
- LOAD, STORE: interact with memory
- Syscal |s: memory accesses



Meta—data

* Mark bit for segment ranges

* Range check possible pointers for extra
space

Generate tainted data —~

al1] |af2] . a1 [0

* |[nstrumentation deals with shadow value
~ Generate instrumentation




Meta—data lookup

Handle o
®

| Master Pointer

Master Pointer

Handle

Master Pointer

| Master Pointer




Locating root (CWE)

* Unchecked Array Indexing (ID: 129)
ST<end>(<addr)>) = <{data)
PUT(16) = <datay
* 1correct Pointer Scaling (ID: 468)
- Add32(GET:132(16),<con))

* I ailure to Handle Length Parameter
.nconsistency (ID: 130)

- <op>(Kargl>, <arg2>)
- ST<end>(<addr>) = <{data>



Locating root (CWE)

. Incgrrect Calculation of Buffer Size (ID:
13]

t{tmpy = <{datay
- opy(<argl>, <arg2))
* Integer Overflow or Wraparound (ID: 190)
opy(Kargly, <arg2>)
- ST<end>(Kaddr>) = <{datay
* Of f-by—-one Error (ID: 193)

ST<end>(Kaddr>) = <data)
PUT(16) = <datay



Locating root (CWE)

* Use of sizeof() on a Pointer Type (ID:
467)

* Assignment of a Fixed Address to a Pointer
(ID: 587)

* Attempt to Access Child of a Non—-structure
Pointer (ID: 588)



Future improvements

 Efficient search procedure
* Use logical formalism



Thank you!

Questions?
ramosblc@gmail . com
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