Shuntaint: Emulation—-based Security Testing
for Formal Verification

Bruno Luiz
ramosb | c@gmai | . com

Black Hat Europe 2009

Overview

* Give a brief overview of the emulation-
based security testing

* Introduction to VEX

* Formal ism

* Implementation details
* Benchmark programs

What is it?

* A automated proof in an error or a pattern
we are looking for

-~ Detected violation of range or bondary |imits
~ Convergence to an inappropriate point
* Methods for model ing of symbolic memory

- |t periodically determines checks for specific
user data or functionality can be bypassed

* Bug-finding during simulated execution of
the computer program

- Using valgrind “tool plug-in”

Example: bounds checking on
statlc array

8048387 sub $0x18, %$esp
804838a sub $0x4, $esp
804838d push $0xf
804838f push $0x0

8048391 lea -0xf (%ebp), $Seax Ox7572626a
8048394 push %eax

8048395 call 80482cc <memset@plt> 0x756c6f6e
804839%9a add $0x10, %esp

804839d sub S0x4, $esp 0x61727a69
80483a0 push $0xf

80483a2 pushl 0x8 (%ebp) 0x73736f6d
80483a5 1lea -0xf (%ebp), Seax

80483a8 push %eax Oxbf863b00
80483a9 call 80482ec <strncatl@plt>

80483ae add $0x10, %esp

Problem Statement

* Flaws may pass through the software checks

* Error—checking tool detects something bad
happening, but not how error can be
triggered

* Memory—to—Memory propagation cannot
address some situations

* Doesn’t perform automatic crafted
manipulations trying to replace legitimate
memory to trigger bug

Emulation—-based Method

* Abusing of self-modifying code

~ Translation, instrumentation and compilation
to machine code

* Math background

~ Very useful in computing sets of states

~ Ensuring correctness of the model that l|eads
to the error

* Error trace that leads to an error state
- Mcre nrecise understanding of entry pcints

Dealing with VEX:intermediate
representation

* Library for instrumentation or translation

* Converts blocks of machine code to an
intermediate representation

* Provides usefull operations for Ilow—level
memory manager

* Architecture—neutral Intermediate
representation

VEX interface overview

* |[nstrumentation suports:
VgCal I backClosure:

~ Thread requesting the translation
~ GQuest address: redirected and non-redirected

* Superblocks represents instructions

* Guest state layout contains stack pointer
and program counter

* Byte ranges of original code is available

* Native word of Simulated/Real CPU have
easy control

VEX interface, main fuctions

* VG_(basic_tool_funcs)

~ This is enough for initialisation
* VG_(needs_client_requests)

~ Trapdoor mechanism
* VG_(needs_syscal | _wrapper)

- Trackable events before and/or after system
calls

* VG_(needs_mal loc_replacement)
-~ Replace behaviour of friends fuctions

EX interface, some more
unctions

* \G_(track_new _mem_startup)

- Memory events notified to the appropriate
function

* VG_(track_new_mem_stack)
-~ Track start of stack
* VG_(track_pre_mem_write)
- Cal led before an event of memory write

* Plus fuctions, read/writer register
events, thread events, client requests,
etc.

VEX IR description

* Super blocks (IRSB) are blocks of
simulated instruction

* Each |IRSB contains a |list of statements
(IRStmt) with side effects

- storing a value to memory
—assigning to a temporary variable

* |[IRStmt may have expressions (IRExpr)
without side effects

—arithmetic expressions
-~ |oads from memory

Guest code addresses

8048384

55

push %ebp

IMark(0x8048384, 1)

t0 = GET:132(20)
t19 = GET:132(16)

t18 = Sub32(t19,0x4:132)

PUT(16) = 118
STle(t18) = t0

8048385

89 eb

mov %esp,%ebp

IMark(0x8048385, 2)

PUT(20) = t18

8048387

83 ec 18

sub $0x18,%esp

IMark(0x8048387, 3)
t2 = Sub32(t18,0x18:132)

804838a

83 ec 04

sub $0x4,%esp

IMark(0x804838A, 3)
t5 = Sub32(12,0x4:132)

PUT(32) = 0x6:132

PUT
PUT
PUT

(36)
(40)
(44)

=12
= 0x4:132
= 0x0:132

How does this approach work?

* Analyse programs at run—-time at the level
of intermediate representation

- Modeling, Specification and Verification

* State transition system
* Temporal Logic
* Algorithm

Model Checking

* Converts a design into a formal ism: Memory
Graph

* Find a set of states that satisfy a
temporal logic formula

~ Reverse Tainting Analysis

Network Tainting

* Network is the most |ikely vector of
attack

* Data from network
* File descriptions tracking

~ Trace all inputs from open file description

* open, socket, connect, accept, socketpair, and
close

Locatl?g Potential
Manipulation

* Look at chunks of guest state

* Parameter error is written
- VG_(get_ThreadState)

* Mark shadow area as valid

* Characteristics:

- To set these events VG_(track pre_reg read)
and VG _(track post reg write) are called

- Access area of guest’'s shadow state using
VG_(set _shadow state area)() and
VG_(get_shadow state area)()

- Record definedness at [offset, offset+tlen)

Manipulation Layout

arg 3

arg 2

arg 1

SYS xxx(arg 1, arg 2, arg 3, ...);

Locating roots (CWE)

. Ar§ument Injection or Modification (ID:
88

* Return of Wrong Status Code (ID: 393)
* NULL Pointer Dereference (ID: 476)

Scanning invalid operation

* Hacking pointer check

~ Checks accesses to generate a set of tainted
value

* Write-what—-where conditions

- Adding instructions to VEX IR translated back
to machine code

* How to we get their contents/location?

~ Pointer: for each possible pointer in memory
- LOAD, STORE: interact with memory
- Syscal |s: memory accesses

Meta—data

* Mark bit for segment ranges

* Range check possible pointers for extra
space

Generate tainted data —~

al1] |af2] . a1 [0

* |[nstrumentation deals with shadow value
~ Generate instrumentation

Meta—data lookup

Handle o
®

| Master Pointer

Master Pointer

Handle

Master Pointer

| Master Pointer

Locating root (CWE)

* Unchecked Array Indexing (ID: 129)
ST<end>(<addr)>) = <{data)
PUT(16) = <datay
* 1correct Pointer Scaling (ID: 468)
- Add32(GET:132(16),<con))

* I ailure to Handle Length Parameter
.nconsistency (ID: 130)

- <op>(Kargl>, <arg2>)
- ST<end>(<addr>) = <{data>

Locating root (CWE)

. Incgrrect Calculation of Buffer Size (ID:
13]

t{tmpy = <{datay
- opy(<argl>, <arg2))
* Integer Overflow or Wraparound (ID: 190)
opy(Kargly, <arg2>)
- ST<end>(Kaddr>) = <{datay
* Of f-by—-one Error (ID: 193)

ST<end>(Kaddr>) = <data)
PUT(16) = <datay

Locating root (CWE)

* Use of sizeof() on a Pointer Type (ID:
467)

* Assignment of a Fixed Address to a Pointer
(ID: 587)

* Attempt to Access Child of a Non—-structure
Pointer (ID: 588)

Future improvements

 Efficient search procedure
* Use logical formalism

Thank you!

Questions?
ramosblc@gmail . com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

