.f) HYPERVISTA

Winning the Race to Bare Metal

P

UEFI Hypervisors

“He who gets there fastest with the mostest wins”

.D HYPERVISTA

Summary

e There is a race to bare metal between black hats and white hats

 UEFI pre-OS capabilities provide the ability to launch tools BEFORE
the OS bootloader is called

» Bare metal hypervisor technology is powerful, well understood and
maturing

e« Commodity support for UEFI 2.0 is emerging

« The combination of bare metal hypervisors and UEFI has great
potential and implications for system exploitation and security

.I.)HYID&IQ\/lsT,&

Our Custom Bare Metal Hypervisor

Lightweight and pluggable by design

Contains a custom hypervisor runtime debugger

Capable of hosting x64 line of Windows Operating Systems

Implements Intel® VMX (VT-x)

.DHYI:’F:E’VIBTAF“

UEF]

® Unified Extensible Firmware Interface

 UEFI describes a programmatic interface between the platform
firmware and the OS

 UEFI replaces and extends the functionality of legacy BIOS

« UEFI 2.0 is supported in Microsoft Windows Vista x64 SP1 and
Linux distributions

 Commodity motherboards are beginning to support UEFI 2.0

 Some of the more interesting an powerful features of UEFI are the
pre-OS capabilities

.D HYPERVISTA

UEFI Goals

« OS neutrality

« Well defined, clean, and extensible interfaces
 Modularity

e HLL friendly

o Scalability

* Revolutionary Boot Manager

» Kick-Ass pre-OS capabillities

() HYPERVISTA

UEFI Framework

Operating System

Legacy OS Loader UEFI OS Loader
Compatibility Bt i abiicty
=4 Boot Devices =
GERE -
S @
=< | !{
Other | Platform Firmware
SMBIOS Platform Hardware
ACPI

(Op

(1) HYPERVISTA

Pre
Verifier

N

CPU
Init

AdId3N

Chipset
Init

A 4

Motherboard
Init

N NS

L

Device,
Bus, or
Service

Driver

)

Exposed
API

OS-Absent
Application

N

Transient OS
Environment

N

Transient OS
Boot Loader

]

Previously exposed
Framework APIs
now limited

ExitBootServices()

Boot Services Final OS
Runtime Services Boot Loader 5
DXE Services
—)

Power On —[..Platform Initialization ..]

> [..OS Boot ..]

»Shutdown

7

(1) HYPERVISTA

/" N\

Pre
Verifier

N

CPU
Init

AdId3N

Chipset
Init

A 4

Motherboard
Init

N NS

L

Device,
Bus, or
Service

Driver

N

Exposed
API

OS-Absent
Application

N

Transient OS
Environment

N

Transient OS
Boot Loader

Previously exposed
Framework APIs
now limited

ExitBootServices()

Boot Services Final OS
Runtime Services Boot Loader 5
DXE Services
—)

Power On —[..Platform Initialization ..]

> [..OS Boot ..]

»Shutdown

8

(t4) HYPERVISTA
> EC HNOLO G E S

_ UEFI UEFI - OS
UEFI Driver Application Bootcode

Loader

Platform Init

UEFI Image UEFI OS Loader Bo_ot_S;vices
Load Load Terminate
Standard Drivers and Boot from Operation
Firmware Applications Ordered List of Handed Off
Platform Loaded lteratively UEFI OS Loaders To OS Loader
Initialization
Key
—p Specified by API

I I UEFI API

- - Value Added Implementation

Boot Manager

. UEFI Binaries

[(4) HYPERVISTA

UEFI Framework

Operating System

Legacy OS Loader UEFI OS Loader
Compatibility :
1 % II»
(3]
el
=< |
!
Other !
SMBIOS
~ ACPI

©

[(4) HYPERVISTA

UEFI Framework

Operating System

e

Legacy OS Loader |(

UEFI OS Loader

Compatibility

Other

JETN

7 T
P
A
Lobobobobobodod

Protocols
and Handlers

SETe

A 4

SMBIOS
ACPI

Platform Hardware

==

(=

.f) HYPERVISTA

OS Loader Flow

Determine

UEFI Hypervisor

Determine Location

OS Loader Load and Execute
Location UEFI Hypervisor
(Runtime Service)

Determine
OS Location

Build System
Memory Map

Retrieve Boot
Options from

Transition to
Kernel

12

.f) HYPERVISTA

UEFI Hypervisor Framework

Operating System

UEFI Hypervisor

Legacy OS Loader UEFI OS Loader

Compatibility

Other

UEFI Boot Services

Boot Devices

SETe

Protocols
and Handlers

Alowa N
Jawil |

Platform Firmware

A 4

SMBIOS
ACPI

Platform Hardware

(o
m
i
I
<
=}
®
3
=
7
o
=2

.f) HYPERVISTA

UEFI Hypervisor Framework

Operating System

UEFI Hypervisor

Legacy OS Loader | UEFI OS Loader
o UEFI Boot Services
Compatibility o
% - Boot Devices =
31(3 W
o||® Protocols n
< and Handlers
\ 4
Other | Platform Firmware
SMBIOS Platform Hardware

ACPI

(o
m
i
I
<
=}
®
3
=
7
o
=2

.DHYID&R\/lsT,&

Key Concepts of the Architecture

* Objects managed by UEFI firmware
 UEFI Images

 Handle Database and protocols
 UEFI System Table

e Events

* Device Paths

e Capsules

15

.DHYID&R\/lsT,&

Key Concepts of the Architecture

 EFIl Images

16

.I.)HYID&IQ\/lsT,&

UEFI Image

« A class of files defined by the specification that contain
executable code

 UEFI images contain the old familiar PE/COFF header
that defines the format of the executable code

— UEFI uses a subset of the PE32+ image format with a modified
Image signature

 The header defines processor type AND the image type
— UEFI Application
— UEFI Boot Services Driver
— UEFI Runtime Driver

17

EEEEEEEEEEEE

UEFI Image

» A class of files defined by the specification that contain
executable code

 UEFI images contain the old familiar PE/COFF header
that defines the format of the executable code

— UEFI uses a subset of the PE32+ image format with a modified
Image signature

 The header defines processor type AND the image type
— UEFI Application
— UEFI Boot Services Driver

—UEFI Runtime Driver

18

.D HYPERVISTA

~ Overview of Runtime Services

« Available before, during and after the OS is booted; after
ExitBootService() Is called

 UEFI Runtime Drivers are loaded in memory marked as
EfiRuntimeServiceCode

« UEFI Runtime data structuresare marked as
EfIRuntimeServiceData

 UEFI Runtime Drivers coexist with and can be invoked by
a UEFIl-aware OS

19

.D HYPERVISTA

UEFI Sample Code

(Note the lack of 16-bit assembly language code!!)

20

.f) HYPERVISTA

/*++
Copyright (c) 1998 Intel Corporation
Module Name:
rtdriver.c
Abstract:
Test runtime driver
Revision History
--*/
#include "efi.h"
#include "efilib.h*
//
EF1_STATUS
TestRtUnload (
IN EFI_HANDLE ImageHandle
)
//
CHAR16 *RtTestStringl = L"This is string #1";
CHAR16 *RtTestString2 = L"This is string #2";
CHAR16 *RtTestString3 = L"This is string #3";

EFI_GUID RtTestDriverld = { Oxcc2ac9dl, Ox14a9, 0x11d3, 0x8e, 0x77, 0x0O, OxaO,

Oxc9, 0x69, 0x72, 0x3b };

21

.D HYPERVISTA

EF1_STATUS

InitializeTestRtDriver (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)

{
EF1_LOADED IMAGE *1mage;
EFI_STATUS Status;

InitializeLib (ImageHandle, SystemTable);
Print(L"Test RtDriver loaded\n™);

Status = BS->HandleProtocol (ImageHandle,
(VOID*)&Image) ;

ASSERT ('EFI_ERROR(Status));
Image->Unlload = TestRtUnload;

&LoadedImageProtocol,

22

.f) HYPERVISTA

Status = LiblInstallProtocolInterfaces (&ImageHandle, &RtTestDriverld, NULL,
NULL);

ASSERT (Y'EFI_ERROR(Status));

Print(L"Address of RtTestString3 is %x\n", RtTestString3);
Print(L"Address of RtTestString3 pointer i1s %x\n", &RtTestString3);
RtTestString3 = RtTestString2;

return EF1_SUCCESS;

}

EF1_STATUS
TestRtUnload (
IN EFI_HANDLE ImageHandle

)

DEBUG ((D_INIT, "Test RtDriver unload being requested\n''));

LibUninstalIProtocol Interfaces (ImageHandle, &RtTestDriverid, NULL,
NULL);

return EF1_SUCCESS;

23

.I.)HYID&IQ\/lsT,&

UEFI Hypervisor

e Our challenge was to convert our x64 Windows
hypervisor device driver to a UEFI Runtime device driver

 We identified the MSI P45 Platinum motherboard as
UEFI 2.0 compliant

« We used the Tianocore UEFI 2.0.0.1 SDK

24

.f) HYPERVISTA

DEMO

25

.f) HYPERVISTA

Resources

 UEFI 2.0 Specification — http://www.uefi.org

* “Beyond BIOS — Implementing the Unified
Extensible Firmware Interface with Intel’s

Framework” by Zimmerman, Rothman, and
Hale - Intele Press -

http://www.intel.com/intelpress/

26

.D HYPERVISTA

Questions ?

Email: don AT hypervista-tech.com

27

