
A Side-channel Timing Attack
of the MSP430 BSL

Travis Goodspeed
EMC2, Oak Ridge National Lab

<travis@utk.edu>

June 28, 2008

Abstract
This paper presents a side-channel timing attack in the MSP430

serial bootstrap loader (BSL). Version 2.12, the latest available to the
author at the time of this writing, is the only version known to be
vulnerable.

1 Summary

The Texas Instruments MSP430 low-power microcontroller is used
in many medical, industrial, and consumer devices. It may be pro-
grammed by JTAG or a serial bootstrap loader (BSL) which resides
in masked ROM.

By design, JTAG may be disabled by blowing a fuse. The BSL
may be disabled by setting a value in flash memory. When enabled,
the BSL is protected by a 32-byte password. If these access controls
are circumvented, a device’s firmware may be extracted or replaced.

In version 2.12 of the BSL, as found in revision G of the MSP430-
FG4618, a password comparison routine suffers from unbalanced tim-
ing, such that processing an incorrect password takes two clock cycles
longer than a correct byte. By observing external timing, it is possible
to determine the correctness of individual bytes, drastically reducing
the amount of time required to guess a password.

This vulnerability has been verified in simulation, but it has yet
to be exploited in hardware.

1



TEST

TEST

Normal

BSL Entry

−RST

BSL Begins

User Program Begins

Figure 1: BSL Entry Sequence (Chips w/ Shared JTAG Pins)

2 Serial Bootstrap Loader (BSL)

The BSL of the MSP430 resides in masked ROM. If an entry sequence
is performed, as is depicted in Figure 1, the BSL–rather than the
user application–is run. The sequence involves two rising edges on the
TEST pin preceding the rising edge of the -RST pin that power on
the chip. Further, the TEST pin must be high on the rising edge of
-RST. For those chips with dedicated JTAG pins, the same sequence
is the same except that falling edges are sent on the TCK pin.

As the BSL continues to function after the JTAG fuse has been
blown, those wishing to protect either firmware or cryptographic keys
will often use the BSL for firmware updates. Each firmware image
contains a password, and without that password little more can be
done with the BSL than erasing all of memory.

Once the BSL has loaded, commands are accepted through a serial
port. While there are many commands, the one of interest here is
RX Password, which must preceed any attempt to read (TX Data)
or write memory (RX Data). Mass Erase, which bulk-erases all of
memory, requires no password by default.

3 Password Composition

The BSL password is the Interrupt Vector Table (IVT) of the chip,
which resides at the top of memory and is composed of sixteen 16-

2



bit pointers to interrupt handlers. Of these 256 bits, the authors
of Tampering with Motes: Real-World Physical Attacks on Wireless
Sensor Networks1 conclude that 40 are random. They then calculate
that a brute force would take 128 years for a guaranteed break. I’ve
since reduced this to 32 years in MSP430 BSL Passwords: Brute Force
Estimates and Defenses2. There might be room for further reduction,
but the time required will never be so short as to be practical. Further,
the method used to reduce the brute forcing time to the order of
decades is only applicable to versions 1.60 and 1.61 of the BSL.

For more information on brute forcing and password reliability, see
the aforementioned papers for risk assessments and a perl script which
randomizes the interrupt table of a firmware image.

4 Timing

In versions prior to 2.12, every byte of the password is compared in
an if/else statement with balanced timing. An example of balanced
timing, which comes from BSL 2.01 of the MSP430F2274, is shown
in Figure 2. In this control flow graph, edges are marked with their
delay in cycles. The BIS3 instruction on the left branch marks a bit
of r11 to invalidate access, while the right branch does nothing. In
doing nothing, however, the right branch was carefully designed to
take exactly as many cycles as the left.

Version 2.12’s comparison function, as shown in Figure 3, is differ-
ent. It is unbalanced in that one branch takes two cycles longer than
the other to execute. As this code is part of a loop and the longer
path is that of an incorrect byte, the timing of this program will be
retarded by two cycles for every incorrect byte.

5 Simulation

To demonstrate this in simulation, the author has written a C program
for the MSP430 that wraps the BSL within an MSP430 simulator. The
image was run 256 times, guessing passwords of every possible byte
repeated. Timing was observed and recorded.

1by Alexander Becher, Zinaida Benenson, and Maximillian Dornseif
2Posted June ’08, http://travisgoodspeed.blogspot.com/
3Bit Immediate Set

3



d3c: cmp.b @r6+, r12 

d3e: jz $+8 

d40: bis #64, r11 

2c

d46: jmp $+2 

2c

d44: jmp $+6 

2c

d48: jmp $+2 

2c

d4a: dec r7 

2c

...

2c

Figure 2: Byte Comparison in BSL 2.01

4



d4e: cmp.b @r6+, r12 

d50: jz $+6 

d52: bis #64, r11 

2c

d56: dec r7 

2c

2c

...

Figure 3: Byte Comparison in BSL 2.12

5



Shortened runtimes were found for repetitions of 0x00, 0x11, and
0x3A. Compared to an average (mode) runtime being 6543 cycles,
a password of 0x00 repeated took only 6541 cycles to complete, a
difference of 2 cycles. A password of 0x11 repeated took 6511 cycles,
while 0x3A repeated took 6513 cycles. Thus the offsets were as shown
in Table 1.

Guess Cycles ∆ ∆/2

00* 6541 2 1
11* 6511 32 16
3A* 6513 30 15
all others 6543 0 0

Table 1: Runtimes of MSP430 BSL Wrapper

The rightmost column of the table gives us the frequencies of each
byte within the BSL. There must be a single 0x00, sixteen 0x11, and
fifteen 0x3A bytes. As the less significant byte, being of an aligned
instruction address, must be even, 0x11 is likely the more significant
byte of each of 16 fields. Thus we have fifteen vectors of 0x113A and
one of 0x1100. As the reset vector always points to the bottom of flash,
it is 0x1100 and the rest are 0x113A. This Sherlock Holmes rundown is
quite unnecessary, however, as the timing has already exposed enough
of the password to break it. The BSL password is shown in Table 2.

0x1100 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

0x113A 0x113A

Table 2: Password of MSP430 BSL Wrapper

6



6 Exploitation

The BSL runs at 1mhz until clocked higher, and a modern MSP430
can be clocked as high at 16mhz. Therefore, a 16mhz MSP430 is quite
capable of the timing necessary to break the password of a vulnerable
chip. To that end, the author is presently designing a handheld device
based upon the MSP430-F2012 for a hardware demonstration.

There are some complications, however. First, the BSL’s timing is
not hard-coded, but rather comes from a tare routine.4 This routine
calibrates the bit-banging serial port handler by observing the timing
of a header byte received by the ’430. This header byte, 0x80, must
be sent with perfectly regular timing if measurements are to be valid.
Any drift will affect the execution time of the password comparison.

Hardware to exploit this vulnerability is quite simple. The 2012
chip is powered by JTAG, which doubles as a method of communicat-
ing with the operator’s workstation. A BSL cable then connects to the
victim board. Three LEDs display status and two buttons allow for
user input. To facilitate untethered operation, broken keys are stored
in the flash memory of the device for later retrieval by JTAG. You’ll
find a schematic diagram in Figure 4.

Once completed, the device’s software will use a bit-banged se-
rial port and the system timers to observe the moments of response
that are found in the target device. Different firmware could serve
to disable the BSL in vulnerable field units, but TI’s MSP430 BSL
Replicator5 might be better suited for such a purpose, as it has suffi-
cient memory to store a complete replacement firmware for the target
device.

7 Conclusion

For applications requiring BSL password protection, the author rec-
ommends that BSL Version 2.12 be disabled entirely. To determine
the version of BSL on a particular chip, read the two bytes of memory
beginning at 0xFFA. 0xFFA is the major version number, and 0xFFB
is the minor version number. Both are in BCD, so 0x02 0x12 means
2.12, not 2.18.

The BSL may be disabled by setting the BSLKEY variable to

4See 0xE86 of BSL 2.12 in Rev. G of the MSP430FG4618.
5described in SLAA089

7



Figure 4: BSLCrack 1.1

8



0xAA55. As the location of this variable varies, see the datasheet of
your particular chip for the address of BSLKEY.

The official documentation of the MSP430 BSL is to be found
in SLAA089 from Texas Instruments. Various articles on MSP430
security can be found at the author’s website,
http://travisgoodspeed.blogspot.com/

9


